• Title/Summary/Keyword: Zero power physics test

Search Result 3, Processing Time 0.016 seconds

Validation of UNIST Monte Carlo code MCS using VERA progression problems

  • Nguyen, Tung Dong Cao;Lee, Hyunsuk;Choi, Sooyoung;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.878-888
    • /
    • 2020
  • This paper presents the validation of UNIST in-house Monte Carlo code MCS used for the high-fidelity simulation of commercial pressurized water reactors (PWRs). Its focus is on the accurate, spatially detailed neutronic analyses of startup physics tests for the initial core of the Watts Bar Nuclear 1 reactor, which is a vital step in evaluating core phenomena in an operating nuclear power reactor. The MCS solutions for the Consortium for Advanced Simulation of Light Water Reactors (CASL) Virtual Environment for Reactor Applications (VERA) core physics benchmark progression problems 1 to 5 were verified with KENO-VI and Serpent 2 solutions for geometries ranging from a single-pin cell to a full core. MCS was also validated by comparing with results of reactor zero-power physics tests in a full-core simulation. MCS exhibits an excellent consistency against the measured data with a bias of ±3 pcm at the initial criticality whole-core problem. Furthermore, MCS solutions for rod worth are consistent with measured data, and reasonable agreement is obtained for the isothermal temperature coefficient and soluble boron worth. This favorable comparison with measured parameters exhibited by MCS continues to broaden its validation basis. These results provide confidence in MCS's capability in high-fidelity calculations for practical PWR cores.

Reliability Evaluation and failure Analysis for High Voltage Ceramic Capacitor (고압 커패시터의 고장분석과 신뢰성 평가)

  • 김진우;송옥병;신승우;이희진;신승훈;유동수
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2001.06a
    • /
    • pp.337-337
    • /
    • 2001
  • High voltage ceramic capacitors are widely applied in power electronic circuits, such as filters, snubbers, and resonant circuits, due to their excellent features of high voltage endurance and low aging. This paper presents a result of failure analysis and reliability evaluation for high voltage ceramic capacitors. The failure nodes and failure mechanisms were identified in order to understand the failure physics in a component. The causes of failure mechanisms for zero resistance phenomena under withstanding voltage test in high voltage ceramic capacitors molded by epoxy resin were studied by establishing an effective closed-loop failure analysis. Also, the condition for dielectric breakdown was investigated. Particular emphasis was placed on breakdown phenomena at the ceramic-epoxy interface. The validity of the results in this study was confirmed by the results of accelerated testing. Thermal shock test as well as pressure cooker test for high voltage ceramic capacitor mounted on a magnetron were implemented. Delamination between ceramic and epoxy, which, might cause electrical short in underlying circuitry, can occur during curing or thermal cycling. The results can be conveniently used to quickly identify defective lots, determine mean time to failure (MTTF) of each lot at the level of Inspection, and detect major changes in the vendors processes.

  • PDF

A practical subcritical rod worth measurement technique based on the improved neutron source multiplication method

  • Jiahe Bai;Chenghui Wan;Ser Gi Hong;Hongchun Wu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1398-1406
    • /
    • 2024
  • The control rod worth is a key safety parameter required to be measured in commercial pressurized water reactors (PWRs). Conventionally, the control rod worth is measured after reaching the critical state, which occupies the considerable time in the zero-power physics test. In this study, an efficient control-rod worth measurement technique has been proposed based on the improved neutron-source multiplication method, which can be implemented with the source-range detector count rates in the subcritical states. Moreover, the noise reduction technique has been adopted to smooth the large fluctuation existing in the original signals. In order to verify the engineering performance of the proposed measurement technique, the measured source-range detector count rates during the rod withdrawal process before reaching critical state in a CNP1000 reactor have been employed. It demonstrated that almost all estimated results of control rod worth satisfy the engineering acceptance criteria, except one control rod with the relative difference over 10 %, which indicates the capability of the proposed method in estimating control rod worth.