This paper argues for a need to adopt a conceptually radical approach to zero anaphora resolution in Korean. It is shown that a number of apparently conflicting constraints, mostly motivated by lexical, syntactic, semantic, and pragmatic factors, are involved in determining the referential identity of zero pronouns in Korean. It is also argued that some of the major concepts of Optimality Theory can provide a good theoretical framework to predict the antecedents to zero pronouns in general. A partial formalization of 07-based constraints at the morpho-syntactic and lexico-semantical level is provided. It is argued that the lexico-semantic restrictions on adjacent expressions play the most important role in the anaphora resolution process along with a variant of the binding principle, formulated in semantic terms. Other pragmatically motivated constraints that incorporate some important intuitions of Centering Theory are proposed too.
문서에서 생략된 요소가 지시하는 대상을 식별해 내는 작업은 기계 번역, 정보추출 등과 같은 자연언어처리 분야의 다양한 응용들을 위해 필요하다. 문장에서 생략된 요소들은 영조응사, 영대명사 등으로 불리며, 지시(reference)의 한 유형으로 간주되고 있지만, 모든 영형이 문서에서 명확하게 언급된 지시 대상을 지시하지는 않는다. 이에 영형의 조응성을 결정하려는 연구가 최근 진행되고 있으며, 본 논문에서는 한국어에서 가장 빈번하게 나타나는 영형 주어(subject zero pronouns)의 문장 내 조응성 결정에 초점을 맞춘다. 주어진 영형과 선행사 후보들 간의 쌍대 비교(pairwise comparison)에 기반한 기존 연구와 달리, 본 논문은 비조응적 혹은 문장 간에서 해결 가능한 영형이 나타난 절의 구조를 직접 학습함으로써 영형의 문장 내 조응성을 결정한다. 실험에서 제안한 방법은 베이스라인보다 나은 성능을 보였으며, 영형의 조응성 결정은 향후 영형 조응어 해석에 긍정적인 영향을 줄 수 있을 것으로 기대된다.
한국어에는 복합문에서 영 대용이 빈번하게 발생하여 해석을 어렵게 한다. 따라서 본 논문에서는 한국어 영 대용어 처리를 위해 복합문 분해 알고리즘과 복합문 영 대용어 복원 규칙을 제안하고, 해결방법을 제시한다. 본 논문은 신문 기사의 복합문 중에서 보조용언 내포문을 제외한 인용문, 접속문, 내포문을 처리 대상으로 한다. 복합문 분해를 위해서는 복합문 구성에 관여하는 어미들의 어미 분류표를 이용하고, 영 대용어 복원을 위해서는 생략될 때 적용된 통사규칙을 역으로 이용한다. 인용문은 주어 인칭제약에 따른 동일 명사구 탈락규칙을, 명사화 내포문은 동일 명사구 탈락규칙을, 관형화 내포문은 관계 명사구 탈락규칙을 그리고 접속문은 접속 삭감규칙을 역으로 이용하여 처리한다. 제안한 방법을 이용한 결과 전체 영 대용어 중 83.53%가 해결 가능하며 11.52%는 부분적으로 해결 가능하다.
It is necessary to achieve high performance in the task of zero anaphora resolution (ZAR) for completely understanding the texts in Korean, Japanese, Chinese, and various other languages. Deep-learning-based models are being employed for building ZAR systems, owing to the success of deep learning in the recent years. However, the objective of building a high-quality ZAR system is far from being achieved even using these models. To enhance the current ZAR techniques, we fine-tuned a pretrained bidirectional encoder representations from transformers (BERT). Notably, BERT is a general language representation model that enables systems to utilize deep bidirectional contextual information in a natural language text. It extensively exploits the attention mechanism based upon the sequence-transduction model Transformer. In our model, classification is simultaneously performed for all the words in the input word sequence to decide whether each word can be an antecedent. We seek end-to-end learning by disallowing any use of hand-crafted or dependency-parsing features. Experimental results show that compared with other models, our approach can significantly improve the performance of ZAR.
한국어 문장의 경우 문맥상 추론이 가능하다면 용언의 격이 생략되는 현상 즉 무형대용어 (zero anaphora) 현상이 흔히 발생한다. 무형대용어를 채울 수 있는 선행어 (명사구)를 찾는 문제는 대용어 해결 (anaphora resolution) 문제와 같은 성격의 문제이다. 이러한 생략현상은 백과사전이나 위키피디아 등 백과사전류 문서에서도 자주 발생한다. 특히 선행어로 표제어가 가능한 경우 무형대용어 현상이 빈번히 발생한다. 백과사전류 문서는 질의응답 (QA) 시스템의 정답 추출 정보원으로 많이 이용되는데 생략된 표제어의 복원이 없다면 유용한 정보를 제공하기 어렵다. 본 논문에서는 생략된 표제어 복원을 위해 무형대용어의 해결을 기반으로 하는 시스템을 제안한다.
담화에서 의미를 전달하는 데 문제가 없을 경우에는 문장성분을 생략하여 표현한다. 생략된 문장성분을 무형대용어(zero anaphora)라고 한다. 무형대용어를 복원하기 위해서는 무형대용어 탐지와 무형대용어 해결이 필요하다. 무형대용어 탐지란 문장 내에서 생략된 필수성분을 찾는 것이고, 무형대용어 해결이란 무형대용어에 알맞은 문장성분을 찾아내는 것이다. 본 논문에서는 담화에서의 무형대용어 탐지 및 해결을 위한 말뭉치 생성 방법을 제안한다. 먼저 기존의 세종 구어 말뭉치에서 어휘지도를 이용하여 무형대용어를 복원한다. 이를 위해 본 논문에서는 동형이의어 부착과 어휘지도를 이용해서 무형대용어를 복원하고 복원된 무형대용어에 대한 오류를 수정하고 그 선행어(antecedent)를 수동으로 결정함으로써 무형대용어 해결 말뭉치를 생성한다. 총 58,896 문장에서 126,720개의 무형대용어를 복원하였으며, 약 90%의 정확률을 보였다. 앞으로 심층학습 등의 방법을 활용하여 성능을 개선할 계획이다.
본 논문은 한국어 복합문에서의 영 대용어 해결을 위해 복합문 분해 알고리즘과 영 대용어 복원규칙을 제안하고, 해결 방법을 제시한다. 복합문 분해를 위해서는 복합문 구성에 관여하는 활용 어미들을 이용하고, 영 대용어 복원을 위해서는 생략될 때 적용된 통사규칙을 역으로 이용한다. 제안한 방법을 이용한 결과 전체 영 대용어 중 83.53%가 해결 가능하며 11.52%는 부분적으로 해결 가능하다.
영어와 달리 한국어나 일본어 문장의 경우 용언의 필수격을 채우는 명사구가 생략되는 무형대용어 현상이 빈번하다. 특히 백과사전이나 위키피디아의 문서에서 표제어로 채울 수 있는 격의 경우 그 격이 문장에서 더 쉽게 생략된다. 정보검색, 질의응답 시스템 등 주요 지능형 응용시스템들은 백과사전류의 문서에서 주요한 정보를 추출하여 수집하여야 한다. 그러나 이러한 명사구 생략 현상으로 인해 양질의 정보추출이 어렵다. 본 논문에서는 백과사전 종류 문서에서 생략된 명사구 즉 무형대용어를 복원하는 시스템의 개발을 다루었다. 우리 시스템이 다루는 문제는 자연어처리의 무형대용어 해결 문제와 거의 유사하나, 우리 문제의 경우 문서의 일부가 아닌 표제어도 복원에 이용할 수 있다는 점이 다르다. 무형대용어 복원을 위해서는 먼저 무형대용어의 탐지 즉 문서 내에서 명사구 생략이 일어난 곳을 찾는 작업을 수행한다. 그 다음 무형대용어의 선행어 탐색 즉 무형대용어의 복원에 사용될 명사구를 문서 내에서 찾는 작업을 수행한다. 문서 내에서 선행어를 발견하지 못하면 표제어를 이용한 복원을 시도해 본다. 우리 방법의 특징은 복원에 사용된 문장성분을 찾기 위해 Structural SVM을 사용하는 것이다. 문서 내에서 생략이 일어난 위치보다 앞에 나온 명사구들에 대해 Structural SVM에 의한 시퀀스 레이블링(sequence labeling) 작업을 시행하여 복원에 이용 가능한 명사구인 선행어를 찾아내어 이를 이용하여 복원 작업을 수행한다. 우리 시스템의 성능은 F1 = 68.58로 측정되었으며 이는 의미정보의 이용 없이 달성한 점을 감안하면 높은 수준으로 평가된다.
본고는 한국어 대화체에서 자주 관찰되는 논항 명사구의 생략현상에 대한 분석을 제시한다. 약 한 시간 분량의 라디오 대담 프로그램을 녹취, 전사하여 획득한 자료를 중심으로, 한국어 대화체에서 논항 명사구의 생략 빈도 및 그 생략 논항의 선행사를 지시대상의 유형을 분류한 통계를 제시한다. 나아가 센터링 이론을 적용하여 이들 생략 논항의 선행사를 결정하는 노력에 있어 청/화자와 일반인을 지칭하는 영형 대명사를 센터링 이론의 적용대상에서 제외시킬 것을 제안하고, 이렇게 제외된 청/화자 지칭 영형 대명사가 보이는 언어적 단서를 추적하여 제시한다. 또한 센터의 순위 및 전이 유형을 결정하는 과정에서 반드시 고려해야할 한국어의 특성에 대해 주제와 주어의 차이. 구문분석의 영향, 그리고 세상지식과의 충돌 등을 중심으로 지적한다.
말과 글에서 유추가 가능한 정보에 대해서는 사람들이 일반적으로 생략해서 표현하는 경우를 볼 수 있다. 사람들은 생략된 정보를 문맥적으로 유추하여 이해하는 것이 어렵지 않지만, 컴퓨터의 경우 생략된 정보를 고려하지 못해 주어진 정보를 완전하게 이해하지 못하는 문제를 낳게 된다. 우리는 이러한 문제를 생략어복원을 통해 해결할 수 있다고 여기면서 본 논문을 통해 한국어 생략어복원에 대해 정의하고 기술 개발에 필요한 말뭉치 구축 시의 생략어복원 대상 및 태깅 사례를 포함하는 가이드라인을 제안한다. 또한 본 가이드라인에 의한 말뭉치 구축 및 기술 개발을 통해서 엑소브레인과 같은 한국어 질의응답 시스템의 품질 향상에 기여하는 것이 본 연구의 궁극적인 목적이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.