• Title/Summary/Keyword: Zero Valent Iron

Search Result 137, Processing Time 0.032 seconds

Electrochemical Oxidation of Phenol using Persulfate and Nanosized Zero-valent Iron (과황산염과 나노영가철을 이용한 페놀의 전기화학적 산화)

  • Kim, Cheolyong;Ahn, Jun-Young;Kim, Tae Yoo;Hwang, Inseong
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.2
    • /
    • pp.17-25
    • /
    • 2017
  • The efficiency and mechanism of electrochemical phenol oxidation using persulfate (PS) and nanosized zero-valent iron (NZVI) were investigated. The pseudo-first-order rate constant for phenol removal by the electrochemical/PS/NZVI ($1mA^*cm^{-2}/12$ mM/6 mM) process was $0.81h^{-1}$, which was higher than those of the electrochemical/PS and PS/NZVI processes. The electrochemical/PS/NZVI system removed 1.5 mM phenol while consuming 6.6 mM PS, giving the highest stoichiometric efficiency (0.23) among the tested systems. The enhanced phenol removal rates and efficiencies observed for the electrochemical/PS/NZVI process were attributed to the interactions involving the three components, in which the electric current stimulated PS activation, NZVI depassivation, phenol oxidation, and PS regeneration by anodic or cathodic reactions. The electrochemical/PS/NZVI process effectively removed phenol oxidation products such as hydroquinone and 1,4-benzoquinone. Since the electric current enhances the reactivities of PS and NZVI, process performance can be optimized by effectively manipulating the current.

Decolorization and organic removal characteristics of a SBR process combined with zero-valent iron column (ZVI (Zero-Valent Iron)를 조합한 SBR 공정의 색도 및 유기물 제거 특성)

  • Choi, YoungGyun;Park, ByungJu;Kim, SeongHong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.4
    • /
    • pp.431-438
    • /
    • 2009
  • The purpose of this study was to evaluate the performances of zero-valent iron (ZVI) combined SBR (Z-SBR) process in decolorization and organic removal of synthetic dye wastewater. The batch test for optimizing the operation parameters of ZVI column showed that the appropriate EBCT was around 11 min and the pH of the dye wastewater was below 7.0. During the step increase of influent color unit from 300 to 1,000cu, about 53 to 79% decolorization efficiency could be achieved in control SBR (C-SBR, without ZVI column), which resulted from destroying azo bond of synthetic dye in anaerobic condition. For the same influent color loading, Z-SBR showed always higher decolorization efficiency than C-SBR with an aid of ZVI reducing power. The TCOD concentration in Z-SBR effluent was 20-30mg/L lower than C-SBR effluent although the TCOD before and after ZVI column was nearly same. It means that breakdown of azo bond by ZVI reducing power could increase biodegradability of synthetic dye wastewater.

Analysis of aqueous environment iron dissolution in different conditions (조건의 변화에 따른 수중 환경 내에서의 철 용해 분석)

  • Bae, Yeun-Ook;Min, Jee-Eun;Park, Jae-Woo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.807-810
    • /
    • 2008
  • Permeable reactive barriers containing Zero-valent iron (ZVI) are used to purify ground-water contaminants. One of the representative contaminant is trichloroethylene (TCE). ZVI can act as a reducing agent of TCE. When ZVI is oxidized to Ferric iron, TCE reduced to Ethene, which is non-harmful matter. As a ZVI becomes ferric iron, the reducing effect decreases and iron becomes unavailable. So, constant reduction of TCE requires the regular supply of reducing agent. So, we use Iron-reducing bacteria(IRB) to extend the TCE degrading ability. We perform three experiment DI water, DI water with medium, and DI water with medium and IRB. By the experiment we try to found the dissolve ability.

  • PDF

Reductive Dechlorination of Chlorinated Oraganic Compounds Using Zero-Valent Iron (0가 철분을 이용한 유기염소화합물의 환원적 탈염소화)

  • Lee, Chang-soo;Bae, Woo-keun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.4
    • /
    • pp.427-432
    • /
    • 2001
  • The purpose of study is to examine the sensitivity of the rate of degradation to initial TCE concentration and iron concentration in the solution. The batch tests were executed to assess the degradation rate at varying initial conditions. First order rate constants($k_a$) were more rapid with the lower initial TCE concentration, Howere the correleation was not always linear between $k_a$ and initial TCE concentration. $k_a$ was proportionally increased as the increasing surface area. It implied that the effective reactive surface area acted as the limiting factor on the reductive dechlorination of TCE by iron.

  • PDF

Development of Activity Enhanced Zero Valent Metals for Permeable Reactive Barrier (침투성 반응벽체를 위한 고활성 영가금속 개발)

  • Kim, Young-Hun;Kim, Myung-Chul
    • Journal of Environmental Science International
    • /
    • v.12 no.2
    • /
    • pp.201-205
    • /
    • 2003
  • The dechlorination of chlorinated methanes by iron powder and palladium coated iron (Pd/Fe) was studied in batch experiments. Iron powder dechlorinated carbon tetrachloride (CT) with a half-life of 4 days. Three chloromethane was found as major product and less chlorinated daughters. Mass balance found was to be about 93-99%. Pd/Fe showed very enhanced reactivity for CT in comparing with plain iron. The major dechlorination products of CT were also less chlorinated methanes with Pd/Fe. Pd/Fe also degrade the produced less chlorinated compounds. Sequential reactions were occurred on Pd/Fe. As the Pd/Fe content increased, the reaction rate was increased linearly.

Decolorization Characteristics of Acid and Basic Dyes Using Modified Zero-valent Iron (개질 영가철을 이용한 산성 및 염기성 염료의 탈색 특성)

  • Choi, Jeong-Hak;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.25 no.12
    • /
    • pp.1717-1726
    • /
    • 2016
  • In this study, the reductive decolorization of three acid and basic dyes using modified zero-valent iron (i.e., acid-washed iron (Aw/Fe) and palladium coated iron (Pd/Fe)) at various pH conditions (pH 3~5) was experimentally investigated and the decolorization characteristics were evaluated by analyzing the absorbance spectra and reaction kinetics. In the case of acid dyes such as methyl orange and eriochrome black T, color removal efficiencies increased as initial pH of the dye solution decreased. However, the color removal of methylene blue, a basic dye, was not affected much by the initial pH and more than 70% of color was removed within 10 min. During the decolorization reaction, the absorbance of methyl orange (${\lambda}_{max}=464nm$) and eriochrome black T (${\lambda}_{max}=528nm$) decreased in the visible range but increased in the UV range. The absorbance of methylene blue (${\lambda}_{max}=664nm$) also decreased gradually in the visible range. Pseudo-zero order, pseudo-first order, and pseudo-second order kinetic models were used to analyze the reaction kinetics. The pseudo-second order kinetic model was found to be the best with good correlation. The decolorization reaction rate constants ($k_2$) of methylene blue were relatively higher than those of methyl orange and eriochrome black T. The reaction rate constants of methyl orange and eriochrome black T increased with a decrease in the initial pH.

Treatment of hazardous chemicals by Nanoscale Iron powder (나노크기 철 분말을 이용한 난분해성 유해화합물질의 처리)

  • 최승희;장윤영;황경엽;김지형
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.3
    • /
    • pp.85-93
    • /
    • 1999
  • The destruction of hazardous chemicals such as chlorinated organic compounds(COCs) and nitroaromatic compounds(NACs) by zero-valent iron powder is one of the latest innovative technologies. In this paper. the rapid dechlorination of chlorinated compounds as well as transformation of nitro functional group to amine functional group in the nitroaromatic compounds using synthesized zero-valent iron powder with nanoscale were studied in anaerobic batch system. Nanoscale iron, characterized by high surface area to mass ratios(31.4$\textrm{m}^2$/g) and high reactivity, could quickly reacts with compounds such as TCE, chloroform, nitrobenzene, nitrotoluene, dinitrobenzene and dinitrotoluene, at concentration of 10mg/L in aqueous solution at room temperature and pressure. In this study, the TCE was dechlorinated to ethane and chloroform to methane and nitro groups in NACs were transformed to amino groups in less than 30min. These results indicated that this chemical method using nanoscale iron powder has the high potential for the remediation of soils and groundwater contaminated with hazardous toxic chemicals including chlorinated organic compounds and nitro aromatic compounds.

  • PDF

Reduction of Nitrate-Nitrogen by Zero-valent Iron Nanoparticles Deposited on Aluminum yin Electrophoretic Method (전기영동법으로 알루미늄에 침적된 영가 철 나노입자에 의한 질산성 질소의 환원)

  • Ryoo, Won
    • Clean Technology
    • /
    • v.15 no.3
    • /
    • pp.194-201
    • /
    • 2009
  • Reductive reactivity of zero-valent iron nanoparticles was investigated for removal of nitrate-nitrogen which is considered one of the major water pollutants. To elucidate the difference in reactivity between preparation methods, iron nanoparticles were synthesized respectively from microemulsion and aqueous solution of ferric ions. Iron nanoparticles prepared from microemulsion were deposited on aluminum by electrophoretic method, and their reaction kinetics was compared to that of the same nanoparticles suspended in aqueous batch reaction. With an approximation of pseudo-first-order reaction, rate constants for suspended nanoparticles prepared from microemulsion and dilute aqueous solution were $3.49{\times}10^{-2}min^{-1}$ and $1.40{\times}10^{-2}min^{-1}$, respectively. Iron nanoparticles supported on aluminum showed ca. 30% less reaction rate in comparison with the identical nanoparticles in suspended state. However, supported nanoparticles showed the superior effectiveness in terms of nitrate-nitrogen removal per zero-valent iron input especially when excess amounts of nitrates were present. Iron nanoparticles deposited on aluminum maintained reductive reactivity for more than 3 hours, and produced nitrogen gas as a final reduction product of nitrate-nitrogen.

Clean-up of Contaminated Groundwater by Permeable Reactive Barrier (투수성 반응벽에 의한 오염지하수 복원효과 분석)

  • 정하익;김상근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.542-547
    • /
    • 2000
  • It has become interested in the concept of permeable barriers for the containment and/or destruction of contaminated groundwater. The purpose of these trench-like barriers is to provide in situ capture and possibly destruction of the contaminant while preserving groundwater flow to uncontaminated zones. For instance, a trichloreethylene(TCE) plume may be contained by a permeable in which reactive iron reduces TCE to ethylene and ethane, compounds which can be easily biodegraded. The objective of this research is to examine the feasibility of using zero-valent iron as a clean-up media in permeable reactive barrier system. A series of laboratory column tests are performed. The concentration of influent and effluent water and the rate of clean up are analysed from these test results. The experimental result shows that the majority of the contamination in groundwater is removed in the reactor. And it shows the corresponding increase in the concentration of chloride ions through the reactor. Results from this study indicate that permeable reactive barrier containing admixtures of zero-valent iron and other materials can effectively clean up groundwater contaminated with organic compounds.

  • PDF

Comparison of explosive compounds (HMX, RDX, and TNT) reduction by micro and nano zero valent iron

  • Bae Beom-Han
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.123-126
    • /
    • 2006
  • Reduction kinetics and intermediates behaviour of three high explosives (HMX, RDX, and TNT) were studies in batch reactors using either nano or micro size zero valent iron(ZVI) as reducing agent. The kinetics constants normalize to the mass of iron($k_M$) or to the surface area ($k_{SA}$) were measured and compared along with the changes of intermediate concentrations of each explosive. Results showed that $k_M$ and $k_{SA}$ values neither correlated each other nor explained the behaviour of intermediates of each high explosive in the batch reactor, in which initial intermediates decreased rapidly with nano ZVI treatment whereas the intermediates accumulated and stayed longer in the micro ZVI treated reactor.

  • PDF