• Title/Summary/Keyword: Zero Net Energy

Search Result 83, Processing Time 0.03 seconds

ENERGY ANALYSIS UTILIZING BIM FOR ZERO NET ENERGY TEST HOME

  • Cho, Yong K.
    • Journal of KIBIM
    • /
    • v.2 no.2
    • /
    • pp.17-26
    • /
    • 2012
  • This paper presents the results of a theoretical energy analysis of a research test bed called the Zero Net Energy Test House (ZNETH) in Omaha, Nebraska in U.S.A. The ZNETH project is being designed and built with the goal of consuming a negligible amount of energy by offsetting remaining usage after energy conservation. The theoretically consumed and generated energy levels were analyzed using energy modeling software programs. By integrating a highly graphical and intuitive analysis with a Building Information Model(BIM) of the house, this investigation introduces strategies to include sustainable materials and systems to predict energy generation with a case study of ZNETH. In addition, this paper introduces parametric analyses for better envelope design and construction material selection by analyzing simulated energy consumption with various parametric inputs, e.g., material types, location, and size. It was found that the current design of ZNETH does not meet its goal of zero net energy. Sugeestions are presented to assist ZHETH in meeting its net zero energy goal.

A Feasibility Case Study on Net-Zero Energy Daycare Center (어린이집의 넷 에너지 제로화 구현에 관한 사례분석)

  • Kim, Ji-Hyeon;Lim, Hee-won;Shin, U-cheul
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.4
    • /
    • pp.185-192
    • /
    • 2019
  • In this study, we, through case studies, formulated a method to implement net-zero energy daycare center at the current insulation and technology level, and calculated its energy expense. The reference model was a medium sized daycare center whose number of children was 99. We analyzed the energy consumption status for the reference model and developed TRNSYS simulation analytical model to realize net-zero energy . We assumed the reference model to be "All Electric Building" where all energy including cooking is supplied by electricity. The result is summarized as follows: First, the annual electricity consumption of daycare center was 53,291kWh. Plug load occupied the largest share of 48% followed by lighting, 10%, cooling, 9%, cooking, 9%, heating, 8%, hot water, 5% and ventilation, 2%. Second, the photovoltaic installation capacity to realize net-zero energy was 40.32kWp and its annual generation was 53,402kWh. Third, the annual energy expense(electricity bill) by realizing net-zero energy was 2,620,390won.

Toward Net-Zero Energy Retrofitting: Building-Integrated Photovoltaic Curtainwalls

  • Kim, Kyoung Hee;Im, Ok-Kyun
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.1
    • /
    • pp.35-43
    • /
    • 2021
  • With the rapid urbanization and growing energy use intensity in the built environment, the glazed curtainwall has become ever more important in the architectural practice and environmental stewardship. Besides its energy efficiency roles, window has been an important transparent component for daylight penetration and a view-out for occupant satisfaction. In response to the climate crisis caused by the built environment, this research focuses on the study of net-zero energy retrofitting by using a new building integrated photovoltaic (BIPV) curtainwall as a sustainable alternative to conventional window systems. Design variables such as building orientations, climate zones, energy attributes of BIPV curtainwalls, and glazed area were studied, to minimize energy consumption and discomfort hours for three cities representing hot (Miami, FL), mixed (Charlotte, NC), and cold (Minneapolis, MN). Parametric analysis and Pareto solutions are presented to provide a comprehensive explanation of the correlation between design variables and performance objectives for net-zero energy retrofitting applications.

A Comparative Assessment of Hydrogen Facility Installation for Net-Zero Energy District Planning (제로에너지단지의 적정 수소 활용 규모 및 운용방식에 관한 연구)

  • Junoh Kim;Chulhee Kim;Soyeon Chu
    • New & Renewable Energy
    • /
    • v.19 no.3
    • /
    • pp.1-12
    • /
    • 2023
  • This study aims to evaluate the optimal size of the hydrogen facility to be installed in a zero-energy district in terms of load matching and facility efficiency. A mismatch between energy generation and consumption is a common occurrence in zero-energy districts. This mismatch adversely effects the energy grid. However, using an energy carrier such as hydrogen can solve this problem. To determine the optimal size of hydrogen fuel cells to be used on-site, simulation of hydrogen installation is required at both district-and building- levels. Each case had four operating schedules. Therefore, we evaluated eight scenarios in terms of load matching, heat loss, and facility operational efficiency. The results indicate that district-level installation of hydrogen facilities enables more efficient energy use. Additionally, based on the proposed model, we can calculate the optimal size of the hydrogen facility.

A Study on the Performance Increase in Building Energy Technology according to the Korea's Zero Energy Building Policy (한국의 제로에너지건축 정책 추진에 따른 건축물 에너지기술 성능 연구)

  • Shim, Hong-Souk;Lee, Sungjoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.543-553
    • /
    • 2021
  • As a key policy for achieving the goal of reducing GHG in the building sector, Korea has enforced the mandatory certification of zero-energy buildings for new buildings in the public sector from 2020. This study evaluated a policy to achieve Net Zero by identifying the trend of changes in building energy performance according to policy and presenting a methodology to analyze the current performance state of energy technology applied to buildings. The final goal was to help stakeholders apply appropriate energy technologies for new buildings. For this study, data collected on building energy efficiency certification over the last four years have shown a gradual increase in energy performance. In addition, K-means cluster analysis was used to analyze the performance status of energy technologies applied to buildings. The high and low clusters of education and office facilities were used to analyze the comparative group (2016-2020, 2020). As a result, the solar module area in both high and low clusters of education facilities increased by 261.1% and 283.5%. In contrast, the solar module area decreased by both high and low clusters of office facilities. The most passive and active technologies showed an increase in energy performance.

A Structural Consideration of Storage Interface Unit(SIU) for DC Distributed Net Zero Energy Building (Net Zero Energy Building의 효율 증대를 위한 DC배전의 에너지 저장장치 연계에 대한 연구)

  • Lee, S.W.;Seo, G.S.;Kim, H.J.;Cho, B.H.
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.255-256
    • /
    • 2014
  • 최근 환경 문제가 사회적으로 대두됨에 따라 탄소배출권 제도에 대한 관심이 증대되면서 Net Zero Energy Building(NZEB)에 대한 관심 역시 커지고 있다. NZEB는 주로 태양광을 에너지원으로 이용하며, 더 효율적인 에너지 사용을 위해 에너지 저장장치(SIU)를 이용하는데 이 두 요소들은 DC전압을 출력으로 갖고 있으며, NZEB의 특성상 외부 AC그리드와 연결된 양방향 AC/DC컨버터의 사용량이 적기 때문에 건물 내 배전을 DC로 할 경우 더 효율적인 에너지 사용이 가능하다 본 논문은 기존 DC배전의 구조에 대해 살펴보고, 여기에 Renewable-Storage Connecting Unit(RSCU)을 더해 NZEB에서 에너지 사용의 효율성을 높이는 방법에 대해 연구하며, 또한 그 시스템 제어 방법에 대해 연구한다.

  • PDF

Idaho national laboratory to demonstrate collaboration first versus competition to accelerate achieving a secure clean energy future by 2031

  • Jhansi Kandasamy;Elizabeth Brunner
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.966-972
    • /
    • 2024
  • Idaho National Laboratory (INL) announced at COP27 it would reach net zero greenhouse gas (GHG) emissions by 2031. As a Nuclear, Energy and Environment, and National Homeland Security laboratory, the predominant solution to closing the clean energy gap will include nuclear as a safe, clean, reliable and affordable electricity source with the additional benefit of producing heat and hydrogen to fuel INL's large transportation fleet. INL's collaboration first vs. competition is essential to the program's success. The focused actions in INL's Nuclear Roadmap include: Infrastructure, Licensing/Regulatory, Financial, Time to Market, Fuel Cycle and Public Confidence/Communications. The roadmap also includes nuclear technology innovations and creative partnerships with utility providers, regulators, businesses, community members, and Indigenous Peoples to accelerate deployment of advanced reactors. Through development of the Net-Zero Nuclear Roadmap, INL will offer a model to provide safe and secure energy for the nation and the world by: (1) establishing the necessary infrastructure on its 890-square mile site to support demonstration, (2) showing proven pathways through the licensing and regulation process, (3) partnering with utilities to ensure commercial application, and (4) collaborating with industry to site new technologies.

A Study of Load Matching on the Net-Zero Energy House (넷 제로에너지주택의 부하매칭에 관한 연구)

  • Kim, Beob-Jeon;Lim, Hee-Won;Kim, Deok-Sung;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.4
    • /
    • pp.55-66
    • /
    • 2018
  • nZEH (net-Zero Energy House) is defined as a self-sufficient energy building where the sum of energy output generated from new & renewable energy system and annual energy consumption is zero. The electricity generated by new & renewable energy system with the form of distributed generation is preferentially supplied to electrical demand, and surplus electricity is transmitted back to grid. Due to the recent expansion of houses with photovoltaic system and the nZEH mandatory by 2025, the rapid increase of distributed generation is expected. Which means, we must prepare for an electricity-power accident and stable electricity supply. Also electricity charges have to be reduce and the grid-connected should be operated efficiently. The introduction of ESS is suggested as a solution, so the analysis of the load matching and grid interaction is required to optimize ESS design. This study analyzed the load matching and grid interaction by expected consumption behavior using actual data measured in one-minute intervals. The experiment was conducted in three nZEH with photovoltaic system, called all-electric houses. LCF (Load Cover Factor), SCF (Supply Cover Factor) and $f_{grid}$ (Grid Interaction Index) were evaluated as an analysis indicator. As a result, LCF, SCF and $f_{grid}$ of A house were 0.25, 0.23 and 0.27 respectively; That of B house were 0.23, 0.23, 0.19, and that of C were 0.20, 0.19, 0.27 respectively.

BIM-DRIVEN ENERGY ANALYSIS FOR ZERO NET ENERGY TEST HOME (ZNETH)

  • Yong K. Cho;Thaddaeus A. Bode;Sultan Alaskar
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.276-284
    • /
    • 2009
  • As an on-going research project, Zero Net Energy Test Home (ZNETH) project investigates effective approaches to achieve whole-house environmental and energy goals. The main research objectives are (1) to identify energy saving solutions for designs, materials, and construction methods for the ZNETH house and (2) to verify whether ZNETH house can produce more energy than the house uses by utilizing Building Information Modeling (BIM) and energy analysis tools. The initial project analysis is conducted using building information modeling (BIM) and energy analysis tools. The BIM-driven research approach incorporates architectural and construction engineering methods for improving whole-building performance while minimizing increases in overall building cost. This paper discusses about advantages/disadvantages of using BIM integrated energy analysis, related interoperability issues between BIM software and energy analysis software, and results of energy analysis for ZNETH. Although this investigation is in its early stage, several dramatic outcomes have already been observed. Utilizing BIM for energy analysis is an obvious benefit because of the ease by which the 3D model is transferred, and the speed that an energy model can be analyzed and interpreted to improve design. The research will continue to use the ZNETH project as a testing bed for the integration of sustainable design into the BIM process.

  • PDF

The Concept and Modeling of Zero Energy Buidling(ZEB) (Zero Energy Building(ZEB) 개념 및 설계 모델링에 관한 연구)

  • Park, Sang-Ho;Kim, Kwang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2186_2187
    • /
    • 2009
  • 본 논문은 Zero energy building(ZEB) 또는 net zero energy building의 정의와 개념에 대해서 서술 하였다, 그리고 ZEB의 장단점을 알아보고 연구 방향에 대해서 논하였다. ZEB는 주거와 상업적 빌딩에 신재생에너지를 이용하고 에너지 소비 효울을 높여 큰 에너지 절감을 통해 경제적 이익을 얻을 수 있고 저탄소 배출로 환경을 보존 할 수 있는 녹색성장의 한 방법이다. "Zero energy"라는 단어는 요즘 많이 사용 되는데 비해 정확한 정의와 개념에 대해서는 이해가 부족하다. 따라서 본 논문에서는 ZEB에 대해 정확한 정의와 세계적 흐름, ZEB의 장단점 그리고 앞으로 연구해야 할 방향에 대해 논의 하겠다.

  • PDF