• Title/Summary/Keyword: Zero Moment Point (ZMP)

Search Result 96, Processing Time 0.037 seconds

Analysis of Stable Walking Pattern of Biped Humanoid Robot: Fuzzy Modeling Approach (이족 휴머노이드 로봇의 안정적인 보행패턴 분석: 퍼지 모델링 접근방법)

  • Kim Dongwon;Park Gwi-Tae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.6
    • /
    • pp.376-382
    • /
    • 2005
  • In this paper, practical biped humanoid robot is presented, designed, and modeled by fuzzy system. The humanoid robot is a popular research area in robotics because of the high adaptability of a walking robot in an unstructured environment. But owing to the lots of circumstances which have to be taken into account it is difficult to generate stable and natural walking motion in various environments. As a significant criterion for the stability of the walk, ZMP (zero moment point) has been used. If the ZMP during walking can be measured, it is possible for a biped humanoid robot to realize stable walking by a control method that makes use of the measured ZMP. In this study, measuring the ZMP trajectories in real time situations throughout the whole walking phase on the flat floor and slope are conducted. And the obtained ZMP data are modeled by fuzzy system to explain empirical laws of the humanoid robot. By the simulation results, the fuzzy system can be effectively used to model practical humanoid robot and the acquired trajectories will be applied to the humanoid robot for the human-like walking motions.

Stability Analysis of a Biped Robot using FRI (FRI를 이용한 이족 보행 로봇의 안정도 해석)

  • 김상범;최상호;김종태;박인규;김진걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.574-577
    • /
    • 2001
  • This paper presents the comparison of FRI(Foot Rotation Indicator) point and ZMP(Zero Moment Point) in biped robot stability. We showed FRI may be employed as a useful tool in stability analysis in biped robot. Also, we proposed the balancing joint trajectory derived from FRI point equation for stable gait. The numerical calculation routines and walking algorithms for simulation are performed by MATLAB. The procedure is composed of the leg trajectory planning, the generation of balancing trajectory, and the verification of dynamic stability.

  • PDF

Motion Adjustment for Dynamic Balance (동적 균형을 위한 동작 변환)

  • Tak, Se-Yun;Song, O-Yeong;Go, Hyeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.5 no.2
    • /
    • pp.33-41
    • /
    • 1999
  • This paper presents a new algorithm about motion adjustment for dynamic balance. It adjusts an unbalanced motion to an balanced motion while preserving the nuance of original motion. We solve dynamic balancing problem using the zero moment point (ZMP) which is often used for controlling the balance of biped robot. Our algorithm is consists of four steps. First, it fits joint angle data to spline curves for reducing noise. Second, the algorithm analyzes the ZMP trajectory so that it can detects the dynamically-unbalanced duration. Third, the algorithm project the ZMP trajectory into the supporting area if the trajectory deviates from the area. Finally, the algorithm produces the balanced motion that satisfies the new ZMP trajectory. In this step, the constrained optimization method is used so that the new motion keeps the original motion characteristics as much as possible. We make several experiments in order to prove that our algorithm is useful to add physical realism to a kinematically edited motion.

  • PDF

A Study on Stability of Excavator using ZMP (ZMP를 이용한 굴삭기의 안정성에 관한 연구)

  • Choi, Jong-Hwan;Um, Hyuk;Lim, Tae-Hyeong;Kim, Sung-Su;Yang, Soon-Yong;Lee, Byung-Ryong;Ahn, Kyung-Kwan
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.86-92
    • /
    • 2003
  • The hydraulic excavator has been a popular research object for automation because of its multi-workings and economic efficiency. When it works crane tasks, most of disasters happen. The stability of the excavator having crane function has a close relation with excavators posture, motion and load. In this paper, the stability of tipping-over has been analysed using zero Moment point(ZMP)

  • PDF

Stability Analysis of a Biped Robot using Wrench System (렌치 시스템을 이용한 이족보행 로봇의 안정도 해석)

  • 임헌영;심재경;황규혁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.648-651
    • /
    • 2004
  • Biped robot has better mobility than other mobile robot, but it is hard to maintain balance during walking. In order to maintain balance, stability analysis is a key point for a biped robot. The zero moment point analysis has been used most in stability analysis. In this paper, we propose different method of stability analysis using wrench system. It is possible to generate a wrench system by applying a force along an axis in space and simultaneously applying a moment about the same axis. Wrench system is equivalent to a force and moment applied along the same axis. We compare the result of wrench system analysis with that of zero moment analysis in biped robot stability using simulation program.

  • PDF

Computation of Tipping over Stability Criterion using ZMP algorithm for Hydraulic Excavator having Crane Function

  • Lim, Tae-Hyeong;Kim, Yong-Seok;Cheon, Se-Young;Lee, Young-Ju;Choi, Jong-Hwan;Lee, Hong-Seon;Yang, Soon-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.286-290
    • /
    • 2004
  • This paper deals with tipping over of hydraulic excavator's crane work. If the excavator lifts too heavy weight, the excavator will be tipped up. This is account for 38% of whole excavator accidents. In this paper, tipping-over load which is maximum load of excavator can lift with displacement of excavator links, real load and tipping-over rate are computed with Zero Moment Point theory. ZMP is verified with simulation and experiment.

  • PDF

Control of a Biped Walking Robot using ZMP Formulation (균형점 정형화를 이용한 이족보행로봇 제어)

  • Lim, Sun-Ho;Kim, Jin-Geol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.8
    • /
    • pp.1022-1030
    • /
    • 1999
  • This paper is concerned with the balancing motion formulation and the control of ZMP (zero moment point) for a biped walking robot with balancing joints. The balancing equation of a biped robot can be modeled as the second order non-homogeneous differential equation, which makes it possible to plan the desired trajectories for various gaits or motions. Also, the balancing motion can be defined easily by solving the differential equation without pre-processing or heuristic procedures. The actual experiments are performed on biped walking robot system IWR-III, developed in our Automatic Control Lab. The system has the structure of three pitches in each leg, and one roll and one prismatic type in balancing joints. The walking simulations and the experimental results on IWR-III are shown using the proposed formula and control algorithm.

  • PDF

A Study on the Stability of SPMT (SPMT의 안정성에 관한 연구)

  • Yoo, Dae-Wam;Jo, Kwan-Jun;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.250-257
    • /
    • 2012
  • Currently, large vessels and structures are manufactured into set of blocks, then assembled on-site. Large scale ships that weigh thousands of tons are built in a short period by making set of large blocks and assembled on a dock or a land. When a transporter encounters a slope during the process of transporting blocks, the heavy goods loaded on the transporter can be tilted. Further, if the vehicle moves down the slope in this state then it can cause an accident of overturn of loaded goods. The research has been taken into account to calculate the center of gravity of the transporter carrying heavy objects on a leveled surface or the three dimensions. In addition, ZMP (Zero Moment Point) is used to calculate the allowable slope degree that objects are predicted to overturn. Through the simulation, the objects' stability is tested when it is climbing the slope.

Tracking Control for Biped Robot (이족 보행 로봇을 위한 추적 제어)

  • 이용권;박종현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.315-318
    • /
    • 1995
  • In this paper, an optimal trunk trajectory for stable walking of biped robots is expressed as a simple differential equation, which is then solved by numerical methods. We used ZMP (Zero Moment Point), the virtual total ground reaction point within the region of the supporting food, as the criterion of stability of biped robot walking. If the ZMP is located outside of the stable region in dynamic walking, biped robots fall down. The biped robot considered in this paper consists of two legs and a trunk. The trajectories of the two legs and the ZMP of the biped robot are determined such that they are similar ti those of a human. Based upon those trajectories, the trunk trajectory is solved by numerically integrating differential dynamic equations. Leg motions are controlled by the computed torque control method. The effectiveness of control algorithm as well as the trajectories is confirmed by computer simulations.

  • PDF