• 제목/요약/키워드: Zernike Polynomial

검색결과 29건 처리시간 0.022초

Experimental Sensitivity Table Method for Precision Alignment of Amon-Ra Instrument

  • Oh, Eunsong;Ahn, Ki-Beom;Kim, Sug-Whan
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권3호
    • /
    • pp.241-246
    • /
    • 2014
  • The Amon-Ra instrument is the main optical payload of the proposed EARTHSHINE satellite. It consists of a visible wavelength instrument and an IR energy channel instrument to measure a global Earth albedo. We report a new sensitivity technique for efficient alignment of the visible channel instrument. Whilst the sensitivity table method has been widely used in the alignment process, the straightforward application of the method tends to produce slow process convergence because of shop floor alignment practice uncertainties. We investigated the error sources commonly associated with alignment practices and used them when estimating the Zernike polynomial coefficients. Aided with single center field wavefront error (WFE) measurements and their corresponding Zernike polynomial coefficients, the method involves the construction and use of an experimental, instead of simulated, sensitivity table to be used for alignment state estimations. A trial alignment experiment for the Amon Ra optical system was performed and the results show that 71.28 nm in rms WFE was achieved only after two alignment iterations. This tends to demonstrate its superior performance to the conventional method.

Tolerance Analysis and Compensation Method Using Zernike Polynomial Coefficients of Omni-directional and Fisheye Varifocal Lens

  • Kim, Jin Woo;Ryu, Jae Myung;Kim, Young-Joo
    • Journal of the Optical Society of Korea
    • /
    • 제18권6호
    • /
    • pp.720-731
    • /
    • 2014
  • There are many kinds of optical systems to widen a field of view. Fisheye lenses with view angles of 180 degrees and omni-directional systems with the view angles of 360 degrees are recognized as proper systems to widen a field of view. In this study, we proposed a new optical system to overcome drawbacks of conventional omni-directional systems such as a limited field of view in the central area and difficulties in manufacturing. Thus we can eliminate the undesirable reflection components of the omni-directional system and solve the primary drawback of the conventional system. Finally, tolerance analysis using Zernike polynomial coefficients was performed to confirm the productivity of the new optical system. Furthermore, we established a method of optical axis alignment and compensation schemes for the proposed optical system as a result of tolerance analysis. In a sensitivity calculation, we investigated performance degradation due to manufacturing error using Code V(R) macro function. Consequently, we suggested compensation schemes using a lens group decentering. This paper gives a good guidance for the optical design and tolerance analysis including the compensation method in the extremely wide angle system.

다이아몬드 선삭 가공기의 진단을 위한 대영역 표면 해석 (Very Large Scale Analysis of Surfaces for Diamond Turned Machine Diagnosis)

  • 김승우;장인철;김동식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.687-691
    • /
    • 2000
  • Diamond turning machines for manufacture of precision optics require deliberate diagnosis to ensure that all the machine elements are properly operating, kinematically, dynamically and thermally, to produce demanded work qualities. One effective way is to directly inspect topographical features of work surfaces that have been carefully generated with prescribed machining conditions intended to exaggerate faulty consequences of any ill-operating machine elements. In this research, a very-large-scale Phase measuring interferometric system that has been developed for years at Korea Advanced Institute of Science and Technology is used to fulfill the metrological requirements fur the surface analysis. A special stitching technique is used to extend the measuring range, which integrates all the patches that are separately sampled over the whole surface while moving the stage. Then, the measured surface profile is analyzed to releated the machine error sources. For this, zernike polynomial fitting is used together with the wavelet filter and the fourier transform. Experimental results showed that the suggested technique in this study is very effective in diagnosing actual diamond turning machines

  • PDF

Beer-Lambert 법칙을 적용한 레이저 열원 프로파일 모델링 및 레이저무기용 반사경의 열변형 해석을 통한 구조-열-광학 성능 연구 (A Study on Structural-Thermal-Optical Performance through Laser Heat Source Profile Modeling Using Beer-Lambert's Law and Thermal Deformation Analysis of the Mirror for Laser Weapon System)

  • 홍대기
    • 항공우주시스템공학회지
    • /
    • 제17권4호
    • /
    • pp.18-27
    • /
    • 2023
  • 본 논문에서는 열해석의 하중조건으로 레이저 열원을 설정하여 반사경의 구조-열-광학 성능 분석을 수행하였다. 레이저 열원 모델은 가우시안 빔을 바탕으로 반투명한 소재를 고려한 Beer-Lambert 법칙을 적용하여 하중조건으로 선정하였으며, 반사경만의 성능 분석을 위하여 기구부는 고려하지 않았다. 열변형해석을 수행하여 반사경 표면의 온도 변화로 인한 열응력과 열변형 데이터를 얻었다. 열변형에 의한 반사경 표면의 변위 데이터를 Zernike 다항식에 피팅하여 파면오차를 계산하였으며, 이를 통해 고에너지 레이저가 반사경으로 입사될 때 반사경의 광학 성능을 예측할 수 있었다.

Experimental Study of Large-amplitude Wavefront Correction in Free-space Coherent Optical Communication

  • Guo, Qian;Cheng, Shuang;Ke, Xizheng
    • Current Optics and Photonics
    • /
    • 제5권6호
    • /
    • pp.627-640
    • /
    • 2021
  • In a free-space coherent optical communication system, wavefront distortion is frequently beyond the correction range of the adaptive-optics system after the laser has propagated through the atmospheric turbulence. A method of residual wavefront correction is proposed, to improve the quality of coherent optical communication in free space. The relationship between the wavefront phase expanded by Zernike polynomials and the mixing efficiency is derived analytically. The influence of Zernike-polynomial distortion on the bit-error rate (BER) of a phase-modulation system is analyzed. From the theoretical analysis, the BER of the system changes periodically, due to the periodic extension of wavefront distortion. Experimental results show that the BER after correction is reduced from 10-1 to 10-4; however, when the closed-loop control algorithm with residual correction is used, the experimental results show that the BER is reduced from 10-1 to 10-7.

Error-immune Algorithm for Absolute Testing of Rotationally Asymmetric Surface Deviation

  • Zhang, Yanwei;Su, Dongqi;Li, Le;Sui, Yongxin;Yang, Huaijiang
    • Journal of the Optical Society of Korea
    • /
    • 제18권4호
    • /
    • pp.335-340
    • /
    • 2014
  • Based on Zernike polynomial fitting, we propose an algorithm believed to be new for interferometric measurements of rotationally asymmetric surface deviation of optics. This method tests and calculates each angular surface by choosing specified rotation angles with lowest error. The entire figure can be obtained by superimposing these sub-surfaces. Simulation and experiment studies for verifying the proposed algorithm are presented. The results show that the accuracy of the proposed method is higher than single-rotation algorithm and almost comparable to the rotation-averaging algorithm with fewer rotation measurements. The new algorithm can achieve a balance between the efficiency and accuracy.

렌즈 수차에 의한 타일형 빔 결합 출력 감쇠와 왜곡 현상 분석 (Analysis of Power Degradation and Distortion in Coherent-Beam Combining with Lens Aberration)

  • 김병호;나정균;정윤찬
    • 한국광학회지
    • /
    • 제31권6호
    • /
    • pp.290-294
    • /
    • 2020
  • 본 논문에서는 타일형 결맞음 빔 결합 시스템에서 렌즈의 수차가 빔 결합 효율 저하에 미치는 영향을 정량적으로 분석하였다. 렌즈의 수차를 정량화하기 위하여 Zernike 다항식 방법을 사용하고, 프레넬 회절을 적용하여 빔 결합 상황에서 첨두강도의 변화를 수치적으로 시뮬레이션하였다. 본 논문의 결과는 향후, 실제 상황에서 주어진 렌즈의 수차에 의해 저하되는 빔 결합 효율에 대한 정량적인 예측과 또한, 실제 타일형 결맞음 빔 결합 시스템의 최적 설계에 유용하게 활용될 수 있을 것으로 기대된다.

Optimal Design of a Coudé Mirror Assembly for a 1-m Class Ground Telescope

  • Jaehyun Lee;Hyug-Gyo Rhee;Eui Seung Son;Jeon Geon Kang;Ji-Young Jeong;Pilseong Kang
    • Current Optics and Photonics
    • /
    • 제7권4호
    • /
    • pp.435-442
    • /
    • 2023
  • These days, the size of a reflective telescope has been increasing for astronomical observation. An additional optical system usually assists a large ground telescope for image analysis or the compensation of air turbulence. To guide collimated light to the external optical system through a designated path, a coudé mirror is usually adopted. Including a collimator, a coudé mirror of a ground telescope is affected by gravity, depending on the telescope's pointing direction. The mirror surface is deformed by the weight of the mirror itself and its mount, which deteriorates the optical performance. In this research, we propose an optimization method for the coudé mirror assembly for a 1-m class ground telescope that minimizes the gravitational surface error (SFE). Here the mirror support positions and the sizes of the mount structure are optimized using finite element analysis and the response surface optimization method in both the horizontal and vertical directions, considering the telescope's altitude angle. Throughout the whole design process, the coefficients of the Zernike polynomials are calculated and their amplitude changes are monitored to determine the optimal design parameters. At the same time, the design budgets for the thermal SFE and the mass and size of the mount are reflected in the study.

저니키 모멘트 서술자를 이용한 M:N 면 객체 쌍의 형상 유사도 측정 (Shape similarity measure for M:N areal object pairs using the Zernike moment descriptor)

  • 허용;유기윤
    • 한국측량학회지
    • /
    • 제30권2호
    • /
    • pp.153-162
    • /
    • 2012
  • 본 연구는 저니키 모멘트 서술자를 이용하여 객체 쌍의 기수성에 영향을 받지 않고 M:N 면 객체 쌍의 형상 유사도를 측정할 수 있는 방법을 제안한다. 제안된 형상 유사도는 저니키 기저함수에 객체 집합의 공간적 분포 영역을 투영하여 얻어지는 모멘트를 이용하기 때문에 형상을 구성하는 객체들의 기수성에 영향을 받지 않는다. 또한 낮은 차수의 기저함수에 대응되는 모멘트는 전역적인 형상을 표현하고, 높은 차수의 기저함수에 대응되는 모멘트는 지역적인 형상을 표현하기 때문에 원형상과 유사한 수준으로 형상을 복원할 수 있는 차수까지의 모멘트를 이용함으로써 효과적으로 형상을 서술하고 비교하는 것이 가능하다. 제안된 방법은 서울시 지역의 도로명주소 지도와 차량용 항법 지도의 건물 객체를 대상으로 적용 및 평가하였다. 기존 중첩면적비를 이용한 유사도에 비하여 제안된 유사도는 기수성의 변화에 강건함을 확인할 수 있었다.

점회절 구면파의 전단 간섭계를 이용한 절대위치 측정 (Absolute position measurement by lateral shearing interferometry of point-diffracted spherical waves)

  • 주지영;김승우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.25-26
    • /
    • 2006
  • The method measuring the absolute position of a point diffraction source emitting a spherical wavefront in three-dimension is proposed. Two-dimensional interference of spherical wavefronts is used to overcome ambiguity of phase order. The spherical wavefront is explicated by Taylor series expansion, from which a radius of curvature of a spherical wavefront and its center position in three-dimension are obtainable. The spherical wavefront is reconstructed by a modified lateral shearing interferometer, which uses single-mode fiber as a point diffraction source.

  • PDF