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Based on Zernike polynomial fitting, we propose an algorithm believed to be new for interferometric 

measurements of rotationally asymmetric surface deviation of optics. This method tests and calculates each 

angular surface by choosing specified rotation angles with lowest error. The entire figure can be obtained 

by superimposing these sub-surfaces. Simulation and experiment studies for verifying the proposed 

algorithm are presented. The results show that the accuracy of the proposed method is higher than 

single-rotation algorithm and almost comparable to the rotation-averaging algorithm with fewer rotation 

measurements. The new algorithm can achieve a balance between the efficiency and accuracy.
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I. INTRODUCTION

Due to the increasing requirement for metrology accuracy, 

absolute testing of optics becomes a technological necessity. 

As an indispensable part of the absolute methods, the 

rotation technique can be divided into two basic categories: 

single-rotation algorithm [1-3] and rotation-averaging 

algorithm [4-6]. Based on least-squares fitting of Zernike 

polynomials, the single-rotation method requires only two 

measurements to work out the low-order surface deviation 

of the tested surface. The rotation-averaging algorithm 

measures the optics under test at N equally azimuthally 

spaced positions, and all of the rotationally asymmetric 

surface except that the Zernike terms whose angular order 

m equals kN can’t be calculated out. So we call this lost 

information kNθ  information. This is the main disadvantage 

of the rotation-averaging algorithm. Numerous studies have 

been carried out on the absolute rotation technique. The 

multi-independent series of measurements algorithm [7, 8] 

requires at least two rotation-averaging measurement series 

(N, M), then more surface information apart from the 

kMNθ  information can be obtained. For large optics whose 

exact rotations are physically difficult, a new algorithm 

that adopts a least squares technique to determine the true 

azimuthal positions is proposed and testing errors caused 

by rotation inaccuracy are eliminated. [9, 10]. A compen-

sation algorithm can gain a portion of the loss information 

of the rotation-averaging algorithm by an additional rotation 

measurement [11]. In practice, it’s a challenge to get a 

high-precision rotation stage and keep the environment and 

metrology system stable during testing, so all recorded 

interferograms are unavoidably inflicted with various errors, 

such as angle and decentration errors caused by the rotation 

stage, which will also result in interferometric optics error. 

In this paper, a novel absolute testing algorithm with 

low error is proposed to measure the rotationally asymmetric 

surface deviation of optics. The theoretical formulas are 

derived; comparative analysis on the single-rotation algorithm 

and the new algorithm is presented.

II. THEORETICAL ANALYSIS

For the single-rotation method, the original measurement 
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TABLE 1. The pathological and optimal angles of each angular 

order

Angular 

order

Pathological Angle 

unit: degree

Optimal Angle 

unit: degree

1 0, 360 180

2 0, 180, 360 90, 270

3 0, 120, 240, 360 60, 180, 300

4 0, 90, 180, 270, 360 45, 135, 225, 315

5 0, 72, 144, 216, 288, 360 36, 108, 180, 252, 324

6 0, 60, 120, 180, 240, 300, 360 30, 90, 150, 210, 270, 330

result is expressed as:

1 1
( , ) ( , ) ( , )W T V Sρ θ ρ θ ρ θ= + + (1)

where W is the measurement result; T is the surface 

deviation under test; V indicates all the variational system 

errors, including environmental disturbance, rotational angle 

error, rotational decentration error, the wavefront error of 

interferometer optics; S is the unvarying system errors, 

such as the reference surface of the interferometer. Then 

rotate the tested optics about the optical axis by angle ϕ . 

Because of the various errors during test, the measurement 

result is:

2 2
( , ) ( , ) ( , )W T V Sρ θ ρ θ ϕ ρ θ= + + + (2)

Subtracting Eq. (1) from Eq. (2), the rotationally 

symmetric component of tested surface and the unvarying 

system errors cancel out and the following is hence obtained:

( , ) ( , )
asy asy

W V T Tρ θ ϕ ρ θΔ −Δ = + − (3)

where asy
T  is rotationally asymmetric surface deviation; 

VΔ  is the difference of variational errors between the 

two measurements. By fitting Zernike polynomials to Eq. 

(3), the real Zernike coefficients ( , )n my of the tested 

surface are given by:

-1( , ) = ( , )[ ( , ) - ( , )]n m m n m n mϕ
real

y G w v (4)
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are couples of the Zernike coefficients of 

asy
T , WΔ  and VΔ , respectively.

However, as it’s intricate work to figure out the 

difference of variational errors, in the practical calculation, 

VΔ  is always ignored. Consequently, tested values of 

coefficients are:

1( , ) ( , ) ( , )n m m n mϕ−=
test

y G w (6)

Subtract Eq. (6) from Eq. (4), the coefficient errors then 

are worked out:

( , ) ( , ) ( , )n m m n mϕ= -1
e G v (7)

Then the error-sensitivity function is derived from Eq. (7):

2 2

2 2

( ) ( ) 1

( ) ( ) 2(1 cos )

m m

n n

m m

n n

e e

v v mϕ

−

−

+ =
+ − (8)

According to Eq. (8), when cosmϕ  is approximately 1, 

the error sensitivity is quite large and those rotation angles 

matching cos 1mϕ =  are called pathological angles; similarly, 

when cosmϕ  equals -1, the error sensitivity is minimum 

and those rotation angles matching cos 1mϕ = −  are called 

optimal angles. Pathological and optimal angles are 

completely decided by angular order m. The following 

Table 1 lists these special angles corresponding to angular 

order. 

Founded on above analysis, our new algorithm decomposes 

the tested surface in terms of the angular order m, i.e. 

each part called angular surface is composed by those 

Zernike terms with a same angular order. The key idea of 

the newly proposed algorithm is that each angular surface 

is calculated by the measurement result with a corresponding 

optimal angle. The entire surface deviation can be carried 

out by superimposing all the components. The process of 

the new algorithm is summarized by the following expressions:

( )

( ) ( , ) ( , ) ( , )

asy

m

n

T angular_surf m

angular_surf m = n m m n mα

=∑

∑
-1

Z G w
(9)

where ( , ) ( , )m m

n n
n m Z Z

−=Z  and 
m

n
Z

±
 are Zernike poly-

nomials; rotation angle α  should be an optimal angle 

corresponding to this angular order.

It should be noted that some optimal angles are shared 

with more than one angular order. For example, the 

measurement result of 180° is available to all the odd 

angular surfaces. Therefore, the number of measurements 

is less than the maximum angular order of the surface of 

interest under test. For example, if a 64-term Zernike 

surface is required and the maximum angular order is 7, 

we just need 3 rotation angles: 180° for m=1,3,5,7; 90 or 

270 degree for m=2,6; one of 45,135,225,315 degree for 

m=4.
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(a) (b)

FIG. 1. (a) Figure map of tested surface. (b) Error map with 

0.5° angle error and 0.5-pixel decentration error (rotation 

angle is 30°).

(a) (b)

FIG. 2. Distribution of errors: (a) with different angle errors 

and 0.5-pixel decentration error; (b) with different decentration 

errors and 0.5° angle error.

FIG. 3. The relationships between the calculation error of each angular surface and the rotation angles.

III. NUMERICAL SIMULATION

In the simulation, the surface deviation under test is 

composed by 64 Zernike terms (with fringe Zernike order, 

the same below), which is shown in Fig. 1(a). The difference 

error VΔ  is generated by angle and decentration error of 

rotation. Figure 1(b) depicts the error map with 0.5° angle 

error and 0.5-pixel (simulation CCD camera is 512*512 

pixels) decentration error. For the new algorithm, calibration 

assignments are 180° for m=1,3,5,7, 90° for m=2,6 and 

135° for m=4(the same below). The errors of the new and 

single-rotation algorithm are shown in Fig. 2: Figure 2(a) 

gives the result with different angle errors and 0.5-pixel 

decentration error; Fig. 2(b) gives the result with different 

decentration errors and 0.5-degree angle error. It can be 

seen from Fig. 2 that not only does the calculation error 

of the single-rotation algorithm rely on rotation angles but 

also it is higher than the proposed algorithm. It demonstrates 

that the new algorithm is immune to errors.

With 0.5° angle error and 0.5-pixel decentration error, 

the angular surfaces of m=1~6 are calculated separately 

using different rotation angles, the relationships between 

the rms of calculation error and the rotation angles are 

then obtained, as are shown in Fig. 3. Obviously, these 

curves in Fig. 3 distribute periodically and the error rms is 

quite large with a rapid changing rate at the vicinity of 

pathological angle and reaches a minimum with a slow 

changing rate at optimal angle, which is a good agreement 

with that depicted from Eq. (8). This proves the superiority 

of using optimal angles to measure the corresponding 

angular surface.

Simulation experiments are undertaken to gain more 

insight into the superiority of the new algorithm. A series 

of rotation angles aside from those pathological angles are 

applied to the single-rotation algorithm; three optimal 

angles (90,180,135 degree) are used in the new algorithm. 

Figure 4 shows the error rms of the single-rotation method 

varying with rotation angles, wherein the blue solid line 

represents the error of the new algorithm. According to 

Fig. 4, the rotation angles are clearly critical to the accuracy 

of the single-rotation method. In addition, the errors are 

quite large at the vicinities of pathological angles, which is 

the result of high error of the angular surface corres-

ponding to this pathological angle. The error of the proposed 

algorithm is 0.09 nm rms and the minimum error of 

single-rotation method is 0.13 nm rms. Therefore, the new 

algorithm can improve detection accuracy effectively with 

several measurements.
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FIG. 4. The calculation errors of the single-rotation algorithm 

and the new algorithm.
FIG. 5. Sketch of measurement instrument.

FIG. 6. The relationships between the rms of each angular surface and the rotation angles.

FIG. 7. The relationship between the rms of the tested surface 

and the rotation angles.

IV. EXPERIMENTAL RESULTS

In the experimental verification of the new algorithm, a 

commercial Zygo-Fizeau interferometer is utilized to measure 

a spherical mirror with a clear aperture of 170 mm. Figure 

5 depicts the sketch of the measurement instrument. The 

mirror is tested at 360 equally spaced angular positions 

rotating about the optical axis. The angular surfaces of 

m=1~6 are calculated separately using different measurement 

results. Figure 6 presents the relationships between the rms 

of each angular surface and rotation angles. The curves in 

Fig. 6 are not explicitly periodical as Fig. 3, but the rms 

values near the pathological angles deviate greatly from 

other values, which verifies the correctness of the theory 

in practical testing.

4.1. Comparison with the Single-rotation Algorithm

The low-frequency information (64 Zernike terms) of 

the surface under test is calculated by the new and the 

single-rotation algorithms separately. Figure 7 depicts the 

rms of the solved surface varying with rotation angles, 

wherein the blue solid line corresponds to the proposed 

algorithm. From this figure, we know that the rms values 

figured out by the single-rotation algorithm distribute 

mainly in the range of 7.1~7.4 nm, and mostly centralize 

about the rms value (7.286 nm) of the new algorithm, 

which indicates that the proposed algorithm guarantees a 

higher reliability.

Regard the result of the new algorithm as a criterion 

and subtract it from the surfaces solved by the single- 

rotation algorithm. Figure 8 shows the distribution of 

difference rms. The curve depicted in Fig. 8 coincides well 

with Fig. 4, but owing to the changing errors during 

measurements, it is not strictly symmetrical about 180°. 

The angle (78°) corresponding to the minimum difference 

rms is different from the angles (65° and 295°) in Fig. 4. 
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FIG. 8. The relationship between the difference rms and the 

rotation angles.

(a) (b) (c)

FIG. 9. The difference figure between rotation-averaging 

algorithm and: (a) 200-degree single-rotation algorithm; (b) 

78-degree single-rotation algorithm; (c) The new algorithm.

It reveals that the accuracy of the single-rotation algorithm 

is unstable because the rotation angle with minimum error 

is determined by the difference of variational errors and is 

very hard to predict. On the contrary, the proposed algorithm 

just needs several measurements, and the test results can 

be carried out with high accuracy.

4.2. Comparison with the Rotation-averaging Algorithm

Since the rotation-averaging algorithm can average random 

errors, it generally has a quite high accuracy. In order not 

to lose necessary information, an 8 rotation-averaging 

algorithm is applied to calculate the surface (64 Zernike 

terms). Subtract the solved surface from the other three 

results worked out above. The difference surface maps are 

shown in Fig. 9. The difference rms of 78-degree single- 

rotation algorithm is smaller than 200-degree, which is 

consistent with the conclusion in Fig. 8. The difference 

between the new and rotation-averaging algorithms is just 

0.058 nm rms. Therefore, the accuracy of the proposed 

algorithm is higher than that of the single-rotation algorithm 

and almost comparable to the rotation-averaging algorithm.

Under a highly stable testing environment, the precision 

of the single-rotation method with an appropriate rotation 

angle can attain several nanometers; the precision of the 

rotation-averaging method can attain sub-nanometer if the 

lost surface information is ignored; as to the new algorithm, 

it also can achieve sub-nanometer due to its immunity to 

systematic errors. Certainly, this precision statement applies 

to those spherical mirrors with minor aperture (<500 mm) 

and lower deformation. In traditional testing, the dominating 

systematic error is the reference surface with 3~5 nm rms. 

In absolute rotation testing, the reference surface is canceled 

out, and the systematic errors include errors introduced by 

the rotation stage, interferometric optics error, phase-shifting 

error [12], environment noise and so on. The rotation 

stage’s error can be controlled within 0.2° angle error and 

0.2 pixel decentration error. Interferometric optics error is 

determined by decentration error and optical path [13]. 

Environment error can attain sub-nanometer rms after 

averaging multiple measurement results.

V. CONCLUSION

We have proposed a novel absolute algorithm for the 

interferometric testing of rotationally asymmetric surface 

deviation of spherical optics. Based on least-square fitting 

of Zernike polynomials, it makes combinations of multiple 

evaluations of angular components of a surface into a final 

calibration data. The simulation and experiment results have 

been presented and coincide with each other. Compared 

with the single-rotation algorithm, the proposed algorithm 

requires more than one rotation measurement, nonetheless 

it can improve detection accuracy effectively; compared 

with the rotation-averaging algorithm, this algorithm can 

attain a comparable accuracy by fewer measurements. 

Therefore, the novel algorithm can achieve a balance between 

the efficiency and accuracy of measurement, and is more 

immune to the errors during testing.
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