• Title/Summary/Keyword: Zernike 다항식

Search Result 27, Processing Time 0.021 seconds

A Study on Determination of Quantitative Aberration Using Lateral-Shearing Interferometer (층밀리기 간섭계에 의한 정량적 수차산출에 관한 연구)

  • 김승우;김병창;조우종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.459-463
    • /
    • 1996
  • The lateral-shearing interferometer specially devised for production line inspection lenses is presented. The interferometer is composed with immersion oil and four prisms whose relative sliding motion provide lateral-shearing and phase-shifting. A special phase-measuring algorithm of a-bucket is adopted to compensate the phase-shifting error caused by the thickness reduction in the immersion oil Three different algorithm for determinating quantitative aberration of aspherical lenses are presented and compared with one another.

  • PDF

Very Large Scale Analysis of Surfaces for Diamond Turned Machine Diagnosis (다이아몬드 선삭 가공기의 진단을 위한 대영역 표면 해석)

  • 김승우;장인철;김동식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.687-691
    • /
    • 2000
  • Diamond turning machines for manufacture of precision optics require deliberate diagnosis to ensure that all the machine elements are properly operating, kinematically, dynamically and thermally, to produce demanded work qualities. One effective way is to directly inspect topographical features of work surfaces that have been carefully generated with prescribed machining conditions intended to exaggerate faulty consequences of any ill-operating machine elements. In this research, a very-large-scale Phase measuring interferometric system that has been developed for years at Korea Advanced Institute of Science and Technology is used to fulfill the metrological requirements fur the surface analysis. A special stitching technique is used to extend the measuring range, which integrates all the patches that are separately sampled over the whole surface while moving the stage. Then, the measured surface profile is analyzed to releated the machine error sources. For this, zernike polynomial fitting is used together with the wavelet filter and the fourier transform. Experimental results showed that the suggested technique in this study is very effective in diagnosing actual diamond turning machines

  • PDF

Analysis of Beam Scan Characteristics of Offset Reflector Antennas (오프셋 반사경 안테나의 빔 스캔 특성 해석)

  • 최학근
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.2
    • /
    • pp.207-217
    • /
    • 1999
  • When the feed of an offset reflector antenna is displaced from the focal point, the phase distortion results in the aperture field distribution, which in turn gives rise to a deviation of maximum beam, a decrease in gain, and an increase in sidelobes. In order to study these scan characteristics, an offset reflector antenna with the defocused feed is analyzed by a series expansion method using the Zernike polynomials, which can be used to calculate radiation pattern fast and exactly. And from the analyzed results, scan loss data in terms of reflector geometry are presented. And also, the BDF (beam deviation factor) expression is derived with offset reflector configuration analytically, and calculated results and simple formula of BDF are presented for determining beam deviation characteristics.

  • PDF

Analysis of Power Degradation and Distortion in Coherent-Beam Combining with Lens Aberration (렌즈 수차에 의한 타일형 빔 결합 출력 감쇠와 왜곡 현상 분석)

  • Kim, Byungho;Na, Jeongkyun;Jeong, Yoonchan
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.6
    • /
    • pp.290-294
    • /
    • 2020
  • In this paper, we quantitatively analyze the effect of lens aberration on the degradation of beam-coupling efficiency of a tiled coherent-beam combining system. The Zernike polynomial is used to quantify the aberration of the lens, and Fresnel diffraction is applied to numerically simulate the change in the peak light intensity when combined at a distance. The results of this paper will be useful for quantitative prediction of the beam-combining efficiency that is degraded by aberration of the lens, and it is expected to be helpful for the optimal design of a practical tiled coherent beam-combining system.

Optimal Management of Fabrication and Assembly Tolerance of Optical Systems by Analyzing Its Influence on Zernike Coefficients (쩨르니케 계수의 민감도에 바탕을 둔 광부품 제작 및 조립 공차의 최적 관리)

  • Kim, Hyunsook;Kim, Jin Seung
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.4
    • /
    • pp.209-216
    • /
    • 2015
  • A new method is proposed for optimal management of the fabrication and assembly tolerance of optical systems. The practical utility of the method is shown by applying it to a wide-angle anamorphic IR optical system. In this method the wavefront error of an optical system is expressed in terms of Zernike polynomials, and the sensitivity of the expansion coefficients to the variation of design parameters is analyzed. Based on this sensitivity analysis, the optimal tolerances of the fabrication parameters are determined and the best compensators for the assembly process are selected. By using this method, one can accurately predict with good confidence the best possible performance of a completed optical system in practice.

Absolute position measurement by lateral shearing interferometry of point-diffracted spherical waves (점회절 구면파의 전단 간섭계를 이용한 절대위치 측정)

  • Chu J.;Kim S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.25-26
    • /
    • 2006
  • The method measuring the absolute position of a point diffraction source emitting a spherical wavefront in three-dimension is proposed. Two-dimensional interference of spherical wavefronts is used to overcome ambiguity of phase order. The spherical wavefront is explicated by Taylor series expansion, from which a radius of curvature of a spherical wavefront and its center position in three-dimension are obtainable. The spherical wavefront is reconstructed by a modified lateral shearing interferometer, which uses single-mode fiber as a point diffraction source.

  • PDF

Closed-loop Control of Adaptive Optical System using Coupling Factor of Zonal and Modal Control (지역/모드제어에서의 커플링계수를 이용한 적응광학계의 폐회로 제어 알고리즘)

  • Seo, Yeong-Seok;Baek, Seong-Hun;Park, Seung-Gyu;Kim, Sam;Park, Jun-Sik;Kim, Cheol-Jung;Yang, Jun-Muk
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.108-109
    • /
    • 2003
  • 적응광학(Adaptive optics, AO)계에서 왜곡된 파면을 폐회로 보정하기 위해서는 파면측정 장치와 파면보정 장치인 변형거울의 상관관계를 찾고 보정신호를 제어해주는 알고리즘이 필요하다. 일반적으로 적응광학계를 제어하는 방법을 지역(Zonal)제어와 모드(Modal)제어로 나눌 수 있다. 지역제어는 파면을 영역별로 나누어 파면보정 장치의 각 구동소자 위치에 대응하는 신호를 발생하여 제어하는 방법이고, 모드제어는 파면의 정보를 Zernike 다항식과 같은 일정한 기저함수들의 선형 합으로 표현한 뒤 각 모드에 해당하는 제어신호를 발생하여 전체 파면을 제어하는 방법이다. (중략)

  • PDF

Numerical calculation of contrast transfer function for periodic line-space patterns (주기적인 선물체에 대한 Contrast Transfer Function의 수치계산)

  • 김형수;전영세;이종웅;김성호
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.6
    • /
    • pp.396-402
    • /
    • 1998
  • The measurement of OTF(optical transfer function) is used for evalution of imaging performance of optical system as a standard method. In the mass-production, the contrast measurement of projected patterns is also popular because of its simplicity. In this study, a computer program which evaluates the CTF(contrast transfer function) of optical system for periodic line-space patterns is developed by using the diffraction imaging theory. The MTF(modulation transfer function) and CTF of an aberrated system are evaluated and analyzed for the third order aberrations expressed by the C-coefficients and the Zemike polynomials.

  • PDF

Stable lateral-shearing interferometer for in-line inspection of aspheric pick-up lenses (생산 라인에서의 광 Pick-up용 비구면 대물 렌즈 측정을 위한 안정된 층밀리기 간섭계)

  • 조우종;김병창;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.189-193
    • /
    • 1997
  • Aspheric pick-up lenses are increasingly used in consumer products such as computer and multimedia, as their mass production has become possible owing to the injection molding process. However still much work needs to be done for more effective manufacture of aspheric lenses, one area of which is the in-line inspection of produced lenses. In this paper, we present a lateral-shearing interferometer that has specially been designed to have a high immunity to external vibration and atmospheric disturbance. The interferometer comprises four prisms. They are directly attached to each other using an immersion oil so that relative sliding motions between the prisms are allowed. Their relative displacement can readily generate necessary lateral-shearing and phase-shifting to determine the wavefront of the beam collimated by the lens under inspection. A special phase-measuring algorithm of arbitrary-bucket is adopted to compensate the phase-shifting error caused by the thickness reduction in the immersion oil. Zernike polynomial fitting has done for determinating quantitative aberration of aspheric pick-up lenses. The interferometer built in this work is robust to external mechanical vibration and atmospheric disturbance so that experimental results show that it has a repeatability of less than λ/100.

  • PDF

Topology Optimization of the Primary Mirror of a Multi-Spectral Camera (인공위성 카메라 주반사경의 위상최적화)

  • Park, Kang-Soo;Chang, Su-Young;Lee, Eung-Shik;Youn, Sung-Kie
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1194-1202
    • /
    • 2002
  • A study on the topology optimization of a multi-spectral camera for space-use is presented. The optimization is carried out under self-weight and polishing pressure loading. A multi-spectral camera for space-use experiences degradation of optical image in the space, which can not be detected on the optical test bench on the earth. An optical surface deformation of a primary mirror, which is a principal component of the camera system, is an important factor affecting the optical performance of the whole camera system. In this study, topology optimization of the primary mirror of the camera is presented. As an objective function, a measure of Strehl ratio is used. Total mass of the primary mirror is given as a constraint to the optimization problem. The sensitivities of the objective function and constraint are calculated by direct differentiation method. Optimization procedure is carried out by an optimality criteria method. For the light-weight primary mirror design, a three dimensional model is treated. As a preliminary example, topology optimization considering a self-weight loading is treated. In the second example, the polishing pressure is also included as a loading in the topology optimization of the mirror. Results of the optimized design topology for the mirror with various mass constraints are presented.