• Title/Summary/Keyword: Zeolite Particle

Search Result 89, Processing Time 0.029 seconds

Electrochemical Behavior of Pt-Ru Catalysts on Zeolite-templated Carbon Supports for Direct Methanol Fuel Cells

  • Lim, Tae-Jin;Lee, Seul-Yi;Yoo, Yoon-Jong;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3576-3582
    • /
    • 2014
  • Zeolite-templated carbons (ZTCs), which have high specific surface area, were prepared by a conventional templating method using microporous zeolite-Y for catalyst supports in direct methanol fuel cells. The ZTCs were synthesized at different temperatures to investigate the characteristics of the surface produced and their electrochemical properties. Thereafter, Pt-Ru was deposited at different carbonization temperatures by a chemical reduction method. The crystalline and structural features were investigated using X-ray diffraction and scanning electron microscopy. The textural properties of the ZTCs were investigated by analyzing $N_2$/77 K adsorption isotherms using the Brunauer-Emmett-Teller equation, while the micro- and meso-pore size distributions were analyzed using the Barrett-Joyner-Halenda and Harvarth-Kawazoe methods, respectively. The surface morphology was characterized using transmission electron microscopy and inductively coupled plasma-mass spectrometry. The electrochemical properties of the Pt-Ru/ZTCs catalysts were also analyzed by cyclic voltammetry measurements. From the results, the ZTCs carbonized at $900^{\circ}C$ show the highest specific surface areas. In addition, ZTC900-PR led to uniform dispersion of Pt-Ru on the ZTCs, which enhanced the electro-catalytic activity of the Pt-Ru catalysts. The particle size of ZTC900-PR catalyst is about 3.4 nm, also peak current density from the CV plot is $12.5mA/cm^2$. Therefore, electro-catalytic activity of the ZTC900-PR catalyst is higher than those of ZTC1000-PR catalyst.

Grain Size Analysis by Hot-Cooling Cycle Thermal Stress at Y-TZP Ceramics using Full Width at Half Maximum(FWHM) of X-ray Diffraction (X-ray 회절의 반치전폭(FWHM)을 이용한 Y-TZP세라믹스에서 반복 열응력에 의한 입계크기 분석)

  • Choi, Jinsam;Park, Kyu Yeol;Kong, Young-Min
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.264-270
    • /
    • 2019
  • As a case study on aspect ratio behavior, Kaolin, zeolite, $TiO_2$, pozzolan and diatomaceous earth minerals are investigated using wet milling with 0.3 pai media. The grinding process using small media of 0.3 pai is suitable for current work processing applications. Primary particles with average particle size distribution D50, ${\sim}6{\mu}m$ are shifted to submicron size, D50 ${\sim}0.6{\mu}m$, after grinding. Grinding of particles is characterized by various size parameters such as sphericity as geometric shape, equivalent diameter, and average particle size distribution. Herein, we systematically provide an overview of factors affecting the primary particle size reduction. Energy consumption for grinding is determined using classical grinding laws, including Rittinger's and Kick's laws. Submicron size is obtained at maximum frictional shear stress. Alterations in properties of wettability, heat resistance, thermal conductivity, and adhesion increase with increasing particle surface area. In the comparison of the aspect ratio of the submicron powder, the air heat conductivity and the total heat release amount increase 68 % and 2 times, respectively.

Comparison of Pollutant Removal Efficiency in Road Sediment with Media Using Filter Separator (필터 분리기를 이용한 여재별 도로퇴적물의 오염물질 제거효율 비교)

  • Bang, Ki-Woong;Lee, Jun-Ho;Choi, Chang-Su;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.332-340
    • /
    • 2007
  • Storm runoff from road contains significant loads of particulate and dissolved solids, organic constituents and metal elements. Micro particle is important when considering pollution mitigation because pollutant metal and organics have similar behavior with particles. The objective of this research is to evaluate the hydrodynamic filter separator performance for road storm runoff treatment. A various types of media such as perlite, granular activated carbon, zeolite were used for column test packing media and filter separator, and to determine the removal efficiency with various surface loading rate. As the results of column test, the highest SS removal efficiency was using mixed media(granular activated carbon, zeolite and perlite), and granular activated carbon mixed with zeolite has higher heavy metal removal efficiency than perlite. In laboratory scale hydrodynamic filter separator study, the operation ranges of surface loading rates were from 192 to 1,469 $m^3/m^2/day$. The estimated overall removal efficiencies of hydrodynamic filter separator for typical storm runoff were SS 48.1%, BOD 31.9%, COD 32.6%, TN 15.5%, and TP 17.3%, respectively. For the case of heavy metals, overall removal efficiencies were Fe 26.0%, Cu 19.4%, Cr 25.7, Zn 16.6%, and Pb 15.0%, respectively. The most appropriate medium for hydrodynamic filter separator was perlite mixed with granular activated carbon to treatment of road storm runoff.

Effect of Some Soil Conditioners on Soil Physical Properties and Tobacco Growth (토양개량제 시용이 토양물리성과 담배생육에 미치는 영향)

  • 이철환;진정의;한철수
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.6
    • /
    • pp.685-691
    • /
    • 1996
  • This experiment was conducted to investigate the effect of some soil conditioners, such as polyvinylalcohol(PVA), zeolite and perlite, on the changes of soil physical properties and on tobacco growth in paddy-upland rotated field. Soil conditioners were treated at the rates of 120kg in PVA, 500kg in zeolite and perlite per l0a, respectively. Ratio of soil aggregates formed from the treated plots tended to. be higher than those from the control in the order of PVA > perlite > zeolite. The wet aggregate stability, mean weight diameter, moisture retention and air permeability from the treated plots tended to be higher than those from the control. Amounts of water-stable aggregates of PV A-treated soil increased with higher soil moisture showing a peak at 50% of moisture content. But with respect to particle of size aggregate formed for crop growth and workability in field, it was presumed that 40% of soil moisture content would be most desirable. Visual characters of soil surface throughout the experiment clearly showed that treated soils were maintaining better surface roughness and porosity than control, but difference in water stable aggregates among treated plots tended to be narrowed. The growths of tobacco, espacially its root zone were better in conditioner treated plots than in non-treated plot showing best in PVA-treated soil.

  • PDF

Template-free Hydrothermal Synthesis of High Phase Purity Mordenite Zeolite Particles Using Natural Zeolite Seed for Zeolite Membrane Preparation (제올라이트 분리막 제조를 위한 유기주형 없는 고순도 모데나이트 제올라이트 입자 수열합성에 관한 연구)

  • Lee, Du-Hyoung;Alam, Syed Fakhar;Lee, Hye-Rheon;Sharma, Pankaj;Cho, Churl-Hee;Han, Moon-Hee
    • Membrane Journal
    • /
    • v.26 no.5
    • /
    • pp.381-390
    • /
    • 2016
  • In this study, the natural mordenite (MOR) zeolite seeds were used for the synthesis of high purity mordenite crystals. The effect of seed concentration and crystallization time on the phase purity and surface morphology of MOR crystals has also been reported. The diffraction, elemental and scanning analysis of MOR zeolite particles obtained from 100 g hydrothermal solution batch containing 3 g natural seed, hydrothermally treated at $140^{\circ}C$ for 72 h reveal the high phase-purity of as-synthesized sample having crystals of uniform size ($1-2{\mu}m$). Moreover, high seed concentration leads to the production of mesoporous MOR particles composed of needle shape primary nano crystallites. The gases adsorption performances of as-synthesized MOR particle were carried out at $25^{\circ}C$ and 0-1 bar. Surprisingly, MOR particles show good adsorption potential for $CO_2$ (97.19 mg/g) compared to other gases. Thus it confirms that high purity MOR particles can be synthesized without using any organic template which gives an advantage of separation performance at lower price.

Removal Characteristic of Soluble Cs in Water Using Natural Adsorbent and High Basicity Coagulant Poly Aluminium Chloride (천연광물 흡착제 및 고염기도 PAC를 이용한 용존성 Cs의 처리특성)

  • Kim, Bokseong;Kim, Youngsuk;Chung, Yoonsuhn;Kang, Sungwon;Oh, Daemin;Chae, Hojun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.7
    • /
    • pp.385-390
    • /
    • 2017
  • This study investigated removal characteristic of soluble Cs in water by RPT (Radioactivity pollutant treatment) with coagulation and sedimentation. The RPT conducted with various chemical and natural coagulants to remove the soluble Cs which consisted pre-adsorption, Sedimentation and post-adsorption. Natural absorbent included Illite and zeolite. Especially, Illite divided LPI (Large Particle Illite) and SPI (Small Particle Illite) by grain size. Also, Chemical coagulants included high basicity PAC (poly aluminum chloride). The adsorbent had a plate structure mainly composed of quartz, albite and muscovite. The surface area were $4.201m^2/g$ and $4.227m^2/g$ and the particle sizes were $197.4-840.9{\mu}m$ and $3.28-53.57{\mu}m$, respectively. The adsorption efficiency of the natural Illite was 82.8% for LPI and 85.6% for SPI. The removal efficiency of turbidity, which was an indirect indicator of adsorbent recovery, was 96.4% and 98.3%, respectively.

The Study on Attrition Resistance of ZnO/natural-zeolite/Fe$_2$O$_3$ Desulfurization Sorbents with CaO for Hot Gas Clean-up (산화칼슘이 첨가된 ZnO/Natural-zeolite/Balho Kim/Fe$_2$O$_3$ 탈황제의 내마모성특성 연구)

  • 정용길;박노국;이종대;전진혁;류시옥;이태진
    • Journal of Energy Engineering
    • /
    • v.13 no.1
    • /
    • pp.75-81
    • /
    • 2004
  • ZZFCa sorbents for hot gas desulfurization in IGCC were prepared by adding calcium oxide to ZZF sorbent in order to improve its attrition resistance in this study. ASTM attrition test for the sorbent was performed at several different weight percentages of CaO to investigate the attrition characteristics of ZBFCa sorbents as a function of CaO content. Attrition index of ZZF without CaO was 28.3% and its collected attrition index was 10.8%. ZZFCa-3 containing 3 wt% CaO showed the lowest attrition index (AI=17.3%, CAI=8.8%) in the test. From the results of SEM morphologies and particle size distribution measurements, ZZFCa-3 maintained a fine shape and a desirable average particle size even after attrition test. In the experiments of sulfidation/regeneration for ZZFCa-3 sorbent concentration of hydrogen sulfide in coal gas was lowered from 10000 ppm to below 1 ppm. Sulfur removing capacity was about 28.8 g S/100 g sorbent. Neither formation of CaSO$_4$ was observed in XRD measurement nor SO$_2$ slippage was observed during sulfidation process.

Applied-Mineralogical Characterization and Assessment of Some Domestic Bentonites (II): Mineralogical Characteristics, Surface Area, Rheological Properties, and Their Relationships (국내산 벤토나이트에 대한 응용광물학적 특성 평가 (II): 광물학적 특징, 체표면적 및 유변학적 특성과 그 연계성)

  • 노진환;유재영;최우진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.33-47
    • /
    • 2003
  • Various applied-mineralogical characterization including measurements of surface area, size distribution, swelling index, and viscosity were done for some domestic bentonites in order to decipher the rheological properties and their controlling factors. The bentonites, which are Ca-type and relatively low-grade (rnontmorillonite contents: 30 ∼ 75 wt%), occur mostly as subhedral lamellas with the size range of 2 ∼ 4 $\mu\textrm{m}$. The size distribution of mineral fractions in bentonite suspension is dominant in the range of 10 ∼ 100 $\mu\textrm{m}$, and though rather complicated, exhibits roughly bimodal patterns. The feature is more conspicuous in the case of zeolitic bentonite. The bentonites have surface areas ranging 269 ∼ 735 $\m^2$/g, which are measured by EGME adsorption method. The EGME surface areas are nearly proportional to the rnontmorillonite contents, moisture contents, or total CEC. In the surface area measurements, zeolitic bentonites have slightly higher values than those zeolite- free types. The measured swelling index and viscosity of domestic bentonites are comparatively low in values. The swelling values of bentonites were measured to be 250∼500% at maximum by progressively mixing amounts of 2 ∼ 5 wt% Na$_2$CO$_3$, which varies depending on the contents of rnontmorillonite and other impurities, especially zeolite. Much amount of sodium carbonate is required for optimum swelling property of zeolitic bentonited which has usually strong Na- exchanged capacity. The bentonites, which are comparatively feldspar-rich and low in size and crystallinity, tend to be higher in viscosity values. Tn addition, the viscosity is largely higher in case of the bentonites with higher pH in suspension. However, the rheological properties of bentonites such as swelling index and viscosity do not show any obvious relationships with rnontmorillonite contents and mean particle size in suspension. In contrast, roughly speaking, the swelling index of bentonites is reversely proportional to the values of surface area which can be regarded as a collective physico-chemical parameter encompassing all the effects caused by mineral composition, surface charge, particle size, morphological farm, and etc. in bentonites. Thus, the rheological properties in bentonite suspension appear to be rather complicated characteristics which mainly depend on the flocculation of clay particles and the mode of particle association, i.e. quasicrystals, controlled by surface charge, morphology, size, and texture of rnon-tmorillonite, and which partly affected by the finer impurities such as zeolite.

Development of Nutrients and Heavy Metals Removal Technology in Saturated Zone Using Zeolite (포화 지층내 영양염류 및 중금속의 제거를 위한 제올라이트의 적용인자 도출)

  • 이승학;이재원;박준범;전연호;이채영
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.435-442
    • /
    • 2000
  • Batch test and column test were performed to develop the design factors for permeable reactive barriers(PRBs) against ammonium and heavy metals, Clinoptilolite, a kind of natural zeolites having excellent cation exchange capacity(CEC), was choosen for the reacting materials through the ion-exchange mechanism. In the batch test, the reactivity of clinoptilolite for ammonium, lead, and copper was examined varying the initial concentration of contaminants(ammonium: 20, 40, 80 ppm, heavy metals: 10, 20, 40 ppm) and the particle size of clinoptilolites(0-0.15, 0.42-0.85, 1-1.25 mm). The reactivity is increasing as the initial concentration decrease and particle size decrease. In the column test, the permeability and the reactivity of the specimens were examined using flexible-wall permeameter. Specimens were made of clinoptilolite and Jumunjin-sand with 20 : 80 weight ratio varying particle size of clinoptilolite. The maximum permeability(1${\times}$10$\^$-4/-5${\times}$10$\^$-5/cm/s) was achieved in the specimen made of 0.42-0.85 mm clinoptilolite and sand.

  • PDF

The De-CH4 Characteristics of NGOC for CH4 Reduction of a CNG Bus (CNG 버스의 CH4 저감용 NGOC의 de-CH4 특성)

  • Seo, Choong-Kil;Choi, Byung-Chul
    • Journal of Power System Engineering
    • /
    • v.20 no.4
    • /
    • pp.69-74
    • /
    • 2016
  • Recently, in order to meet the stricter emission regulations, the proportion of after-treatments for vehicle and vessel is increasing gradually. The purpose of this study is to investigate the de-$CH_4$ characteristics of NGOC in front of proposed combined system according to additive catalyst and support ratio. In the case of Pd addition, the de-$CH_4$ performance of 2Pt-2Pd-3MgO/$Al_2O_3$ NGOC was improved by approximately 10 to 20% for the HC components. The de-$CH_4$ performance of 2Pt-2Pd-3Cr-3MgO/$Al_2O_3$ NGOC was higher compared to five kinds of NGOC catalysts, because Cr particle was smaller and dispersion of Pd was increased. The NGOC(Zeolite:$Al_2O_3$(80%:20%)}catalyst according to support ratio, was improved performance at low temperature region on CO and NO conversion rate.