• Title/Summary/Keyword: Zeolite A

Search Result 1,062, Processing Time 0.031 seconds

Experimental Study on Physical Properties and Water Absorption Resistance Evaluation of Cement Mortar Incorporating Inorganic Metal Salt-based Water Repellent Powder (무기물 금속염계 발수분체를 혼입한 시멘트 모르타르의 물리적 특성 및 수분흡수저항성에 대한 실험적 연구)

  • Lee, Won Geun;Yoon, Chang Bok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.609-616
    • /
    • 2021
  • In this experimental, water-repellent powder, which is a metal salt-based inorganic substance, and natural zeolite powder, which is a pozzolan-based material, were mixed into cement mortar, and their physical properties and resistance to moisture were confirmed. It was confirmed that the test specimen using natural zeolite at the same time had excellent resistance in the water permeation test and the chloride penetration test as compared with the test specimen in which the inorganic metal salt-based water-repellent powder was mixed alone. When a metal salt-based water-repellent powder is used, it cannot be uniformly dispersed inside water due to its insoluble property, and is limited to the surface. When used at the same time as natural zeolite, the setting time at the initial stage of hydration is fast due to the pozzolan reaction, and the water-repellent powder adheres to the porous of the natural zeolite and is evenly distributed inside the test specimen to generate some water resistance.

Effect of Horticultural Media with Recycled Coir Substrates on Growth of Chinese Cabbage and Lettuce Crop (코이어 배지를 재활용한 혼합 상토가 배추 및 상추의 생육에 미치는 영향)

  • Lee, Gyu-Bin;Choe, Yun-Ui;Park, Eun-Ji;Park, Young-Hoon;Choi, Young-Whan;Son, Beung-Gu;Kang, Jum-Soon
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.937-946
    • /
    • 2018
  • This study investigated the applicability of horticultural media with recycled coir substrates the growth of Chinese cabbage (Brassica campestris L. ssp. Pekinensis) and lettuce (Lactuca sativa L.) crop. The six different types of coir based substrates were A, Coir 45: Perlite 35: Vermiculite 12: Zeolite 8 (%), B, Coir 55: Perlite 25: Vermiculite 12: Zeolite 8 (%), C, Coir 65: Perlite 15: Vermiculite 12: Zeolite 8 (%), D, Coir 75: Perlite 5: Vermiculite 12: Zeolite 8 (%), E, Coir 85: Perlite 5: Vermiculite 5: Zeolite 5 (%) and F, nursery media (control). The pH and Electric conductivity of the horticultural nursery media were 6.06-7.00 and $0.45-1.10dS/m^{-1}$, respectively. The nursery media containing coir substrates had higher level of Total N, Ca, K, Mg and P than those without coir. Additionally, it was observed that the growth of Chinese cabbage was the best on D (containing 75% coir) while that of lettuce was the best on E (containing 85% coir). In general, when substrates containg a higher percentage of coir were used, the growth of Chinese cabbage and lettuce was ideal. Additionally, the P, Ca, and Mg content in both plants was not significantly altered by the amount of coir present in the media. However, with an increase in the amount of coir substrate, the chlorophyll, N, and K content was increased. After harvesting, there was no significant difference in the chemical properties of the horticultural nursery media of both plants. Thus, it can be suggested that, coir substrate after a single use could be recycled as horticulture nursery media.

Assessment of Zeolite Soil Mixture as Adsorptive Fill Material at Industrial Zones (산업단지에서의 흡착 성토재로써 제올라이트 토양혼합물의 특성평가)

  • Kwon, Patrick Sun;Rahim, Shahrokhishahraki;Park, Jun Boum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.203-209
    • /
    • 2019
  • A number of industrial zones in South Korea were reported contaminated by heavy metals. Such contamination could cause severe damage to the subsurface environment including soil and groundwater. The treatment of zeolite mixing with soil at the bottom of such industrial zones might prevent, or at least reduce the damage of contamination by adsorption of the heavy metals from the leakage. However, such mixtures should maintain the proper bearing capacity as a foundation fill material from the geotechnical point of view at the same time. To investigate the effect of mixtures of zeolite with local soils for the adsorption of heavy metals (Zn, Pb) and sustainability of bearing capacity, adsorption isotherm tests and direct shear test with compaction tests were performed. Results showed that the mixing zeolite with local soils effectively reduces the spreading of the heavy metal contamination when maintaining its proper geotechnical properties as a fill material of industrial zones.

Effect of Different Zeolite Supported Bifunctional Catalysts for Hydrodeoxygenation of Waste Wood Bio-oil

  • Oh, Shinyoung;Ahn, Sye-Hee;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.344-359
    • /
    • 2019
  • Effects of various types of zeolite on the catalytic performance of hydrodeoxygenation (HDO) of bio-oil obtained from waste larch wood pyrolysis were investigated herein. Bifunctional catalysts were prepared via wet impregnation. The catalysts were characterized through XRD, BET, and SEM. Experimental results demonstrated that HDO enhanced the fuel properties of waste wood bio-oil, such as higher heating values (HHV) (20.4-28.3 MJ/kg) than bio-oil (13.7 MJ/kg). Water content (from 19.3 in bio-oil to 3.1-16.6 wt% in heavy oils), the total acid number (from 150 in bio-oil to 28-77 mg KOH/g oil in heavy oils), and viscosity (from 103 in bio-oil to $40-69mm^2/s$ in heavy oils) also improved post HDO. In our experiments, depending on the zeolite support, NiFe/HBeta exhibited a high Si/Al ratio of 38 with a high specific surface area ($545.1m^2/g$), and, based on the yield of heavy oil (18.3-18.9 wt%) and HHV (22.4-25.2 MJ/kg), its performance was not significantly affected by temperature and solvent concentration variations. In contrast, NiFe/zeolite Y, which had a low Si/Al ratio of 5.2, exhibited the highest improved quality for heavy oil at high temperature, with an HHV of 28.3 MJ/kg at $350^{\circ}C$ with 25 wt% of solvent.

Effects of Spraying Illite and Zeolite on Litter Quality, Microflora, and Footpad Dermatitis in Broiler Litter

  • Sehyun Park;Jihwan Lee;Dongcheol Song;Seyeon Chang;Jaewoo An;Kyeongho Jeon;Hyuck Kim;Jinho Cho
    • Korean Journal of Poultry Science
    • /
    • v.50 no.4
    • /
    • pp.273-282
    • /
    • 2023
  • A total of 192 one-day-old Ross 308 broilers (initial body weight: 31.30±0.41 g) were used in this experiment for 28 days. Treatments were as follows: basal rice husk (CON), rice husk + 1% illite (T1), rice husk + 1% zeolite (T2), and rice husk + 0.5% illite + 0.5% zeolite (T3). The percentage of illite and zeolite was calculated on a weight of litter. Each treatment had four replicates, with 12 birds per pen. Each pen was provided with 5 kg of rice husk as litter. Litter moisture content was significantly decreased (P<0.05) in the T1, T2, and T3 groups compared to CON group at week 4. In litter nitrogen, the T1 group showed significantly lower (P<0.05) litter nitrogen content than the other groups at weeks 1, 2, and 3. Also, the T3 group showed a significantly lower (P<0.05) litter nitrogen content than the CON and T2 groups at weeks 2 and 3. The counts of E. coli in the litter were significantly decreased (P<0.05) in the T1 group compared to the CON group at weeks 2 and 3. Moreover, the counts of Salmonella in the litter were significantly decreased (P<0.05) in the T1 group compared to the CON group at week 4. The FPD score significantly decreased (P<0.05) in the T1 group compared to the CON group. In conclusion, spraying illite could be an ideal way to improve litter quality and decrease FPD in broilers.

Synthesis of Zeolite From Fly Ash (석탄회를 이용한 제올라이트의 열수합성)

  • 진지영
    • Economic and Environmental Geology
    • /
    • v.32 no.6
    • /
    • pp.575-584
    • /
    • 1999
  • Through alkaline hydrothermal activation processes, zeolite minerals were synthesized from fly ashes produced at Youngwol and Boryoung power plants. The syntheses were performed in a closed teflon vessel with a teflon-coated magnetic bar for continuous stirring during the reaction periods. The experiments were caeeied out at three different reaction temperatures ($100^{\circ}C$,$200^{\circ}C$, and $250^{\circ}C$), with varying NaOH concentations (0.5~8N) and reaction time (24 to 288 hours). Mineralogical characterization of the reaction products indicated that Na-p1, analcime, and hydroxysodalite were dominant zeolites formed from the both fly ashes at the given experimental conditions, The highest amount of zoelites produced from the Youngwol and Boryoung fly ash were:60 and 45wt%for Na-P1, 70 and 45wt% for analicime, 50 and 40wt% for hydroxysodalite, respectively. A small amount of zeolite A was present in NaP-dominant dample is about 250 meq/100g. This suggests the possibility of its utilization as an ion-absorbent.

  • PDF

Cu and Zn Ions Adsorption Properties at Various pH with a Synthetic Zeolite (합성 제올라이트를 이용한 pH에 따른 Cu와 Zn 이온의 흡착특성)

  • Lee, Chang-Han
    • Journal of Environmental Science International
    • /
    • v.21 no.7
    • /
    • pp.805-813
    • /
    • 2012
  • The removal property of Cu and Zn ions by chemical precipitation and adsorption using zeolite(Z-C1) prepared from coal fly ash(CFA) were evaluated in this study. Adsorption kinetic and equilibrium mechanisms described to analyze parameters and correlation factors with Lagergen $1^{st}$ and $2^{nd}$ order model and Langmuir and Freundlich model. Analysis of adsorption kinetics data revealed that the pseudo $2^{nd}$ order kinetics mechanism was predominant. The equilibrium data in pH 3 - 5 were able to be fitted well to a Langmuir model, by which the maximum adsorption capacities($q_{max}$) were determined at 124.9 - 140.1 mg $Cu^{2+}/g$ and 153.2 - 166.9 mg $Zn^{2+}/g$, respectively. We found that Z-C1 has a potential application as absorbents in metal ion recovery with low pH.

A Study on the Availability of Activated Sludge for the $Pb^{2+}$ Removal in Aqueous Solution (수용액중 납이온 제거를 위한 활성슬러지의 이용가능성에 관한 연구)

  • 김동석;서정호
    • Journal of Environmental Science International
    • /
    • v.7 no.5
    • /
    • pp.697-705
    • /
    • 1998
  • $Pb^{2+}$ removal capacity and initial $Pb^{2+}$ removal rate were compared between non-biomaterials (granular activated carbon, powdered activated carbon, ion exchange resin, zeolite) and biomaterials (activated sludge, Aureobasidium pullulans, Saccharomyces cerevisiae). The $Pb^{2+}$ removal capacity of biomaterials were greater than that of non-biomaterials, generally. The $Pb^{2+}$ removal capacities of non-biomaterials and biomaterials were shown on the order of ion exchange resin > zeolite > granular activated carbon > powdered activated carbon and A. pullulans > S. cerevisiae > activated sludge, respectively. In the initial $Pb^{2+}$ removal rate, the non-biomaterials showed powdered activated carbon > granular activated carbon > zeolite > ion exchange resin and the biomaterials showed A. pullulans > activated sludge > S. cerevisiae. Comparing the $Pb^{2+}$ removal capacity and initial $Pb^{2+}$ removal rate of activated sludge with those of other non-biomaterials and biomaterials, activated sludge may have an availability on the removal of heavy metal ions by the economical and pratical aspects.

  • PDF

Adsorption of Lead Ion by Zeolites Synthesized from Jeju Scoria (제주 스코리아로부터 합성된 제올라이트에 의한 납이온 흡착)

  • Kam, Sang-Kyu;Hyun, Sung-Su;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.20 no.11
    • /
    • pp.1437-1445
    • /
    • 2011
  • The adsorption performance of lead ion was studied using five zeolites (Na-P1, sodalite (SOD), analcime (ANA), nepheline hydrate (JBW), cancrinite (CAN)) synthesized from Jeju scoria. The adsorption performances of lead ion decreased in the order of Na-P1 > SOD > ANA > JBW > CAN. These results showed that the synthetic zeolite with a higher cationic exchange capacity showed a higher adsorption performance. The uptake of lead ion by synthetic zeolites were described by Freundlich model better than Langmuir model. The adsorption kinetics of lead ion by synthetic zeolites fitted the pseudo 2nd order kinetics better than pseudo 1st order kinetics. The effective diffusion coefficients of lead ion by synthetic zeolites were ten times higher than the zeolite A synthesized from coal fly ash.

Development of Nurserγ Soil for Rice Seedling (Phyllite를 이용한 수도용(水稻用) 육묘(育苗) 상토개발(床土開發))

  • Park, Young-Hee;Chang, Ki-Woon;Hong, Jei-Gu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.2
    • /
    • pp.71-81
    • /
    • 2002
  • The study was carried out to develop nursery soil for rice seedling of phyllite. First of all, physico-chemical properties of used phyllite in the study through the analysis for agricultural utilization evaluation are as following. Bulk density(BD) of phyllite was $1.31g/cm^3$ each other and porosity had 65% of entire pore size. Also, the water holding capacity(WHC) was 43% at 1/3bar pressure, which phyllite has high WHC. According to, the results the experiments for nursery soil were conducted by mixing the materials such as phyllite, zeolite and hill soil. The mixing ratios were 30, 50, and 70% for zeolite and hill soil into phyllite. These mixed materials were packed in a box by adding 0, 1 and 2g of N-fertilizer. At seedling test, there were increases in the growth of shoot and root of rice for phyllite to zeolite and phyllite to hill soil, respectively. On the other hand, the length of leaf increased with increasing application rate of phyllite, while length and a number of root increased with increasing application rate of hill soil. The growth in the plots of phyllite to zeolite and phyllite to hill soil was better than in control plot. Finally, phyllite plot had efficient results when it compared with others and the study used with phyllite will have to more research and effort for agricultural useful material.

  • PDF