

한국가금학회지 제 50권 제 4호, 273~282 (2023) Korean J. Poult. Sci. Vol.50, No.4, 273~282 (2023) https://doi.org/10.5536/KJPS.2023.50.4.273

Effects of Spraying Illite and Zeolite on Litter Quality, Microflora, and Footpad Dermatitis in Broiler Litter

Sehvun Park^{1*}, Jihwan Lee^{2*}, Dongcheol Song¹, Seveon Chang¹, Jaewoo An¹, Kyeongho Jeon¹, Hyuck Kim¹ and Jinho Cho^{3†}

¹Graduate Student, Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea ²Post-Doctor Researcher, Department of Poultry Science, University of Georgia (UGA), Athens, GA 30602, USA

³Professor, Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea

ABSTRACT A total of 192 one-day-old Ross 308 broilers (initial body weight: 31.30±0.41 g) were used in this experiment for 28 days. Treatments were as follows: basal rice husk (CON), rice husk + 1% illite (T1), rice husk + 1% zeolite (T2), and rice husk + 0.5% illite + 0.5% zeolite (T3). The percentage of illite and zeolite was calculated on a weight of litter. Each treatment had four replicates, with 12 birds per pen. Each pen was provided with 5 kg of rice husk as litter. Litter moisture content was significantly decreased (P<0.05) in the T1, T2, and T3 groups compared to CON group at week 4. In litter nitrogen, the T1 group showed significantly lower (P < 0.05) litter nitrogen content than the other groups at weeks 1, 2, and 3. Also, the T3 group showed a significantly lower (P<0.05) litter nitrogen content than the CON and T2 groups at weeks 2 and 3. The counts of E. coli in the litter were significantly decreased (P < 0.05) in the T1 group compared to the CON group at weeks 2 and 3. Moreover, the counts of Salmonella in the litter were significantly decreased (P < 0.05) in the T1 group compared to the CON group at week 4. The FPD score significantly decreased (P<0.05) in the T1 group compared to the CON group. In conclusion, spraying illite could be an ideal way to improve litter quality and decrease FPD in broilers. (Key words: litter, illite, zeolite, footpad dermatitis)

INTRODUCTION

Growing concerns about animal welfare globally, interest in litter management has increased in the broiler industry. Inappropriate management causes poor litter quality, which is one of the main factors in increasing the prevalence of footpad dermatitis (FPD) in broilers (Garcês et al., 2013). The FPD, also known as footpad lesions, is a skin condition problem that is characterized by inflammation, necrotic lesions, and hyperkeratosis ranging from the plantar surface of the footpads and toes (Shepherd and Farichild, 2010). The FPD could induce impaired walking strength through a painful foot skin condition with synovitis and subsequent lameness, which decreased the eager to go to the feeder and drinkers (Clark et al., 2002; Kjaer et al., 2006; Michel et al., 2012).

Generally, litter is a major route for broilers to get exposed to bacterial pathogens through their pecking and coprophagic behavior after broiler placement (Oladeinde et al., 2023). Prolonged contact with bacterial pathogens decreases the

structural integrity of skin tissues, which results in an increased prevalence of FPD in broilers (Manangi et al., 2012; Vieira et al., 2013). The FPD is not only caused by bacterial pathogens, and it is believed to be caused by a combination of litter moisture and nitrogen content (Mohamed Amer, 2020). Excessive litter moisture accelerates the volatilization of ammonia from the microbial metabolism in the excreta, resulting in increased bacterial pathogen activities and lesions with FPD in the broiler (Garcia et al., 2012). Also, nitrogen in litter could be converted to ammonia under anaerobic conditions and to nitrate under aerobic conditions (Madigan et al., 1997). Although the replacement of poor litter (wet and high nitrogen) with dry litter could recover the FPD in about 2 weeks, it is not practical or economically likely to replace litter material frequently (Chen et al., 2016). Therefore, alternative strategies should be considered to reduce litter moisture and nitrogen content.

^{*} These authors have contributed equally to this work.

[†] To whom correspondence should be addressed : jinhcho@chungbuk.ac.kr

Illite is a non-expanding, clay-sized mineral mixture that contains phyllosilicate or layered aluminosilicate (Sarker and Yang, 2010). Illite forms a large surface area by tetrahedra silica sheets, which improves the water absorption capability (Hatch et al., 2012). Also, illite could absorb water into the interlayer spaces due to its interlayer cations (McConville and Lee, 2005; Choi et al., 2009). Thus, illite (0.6%-1.0%) has been used to reduce pathogenic microorganisms and improve resistance against Salmonellosis through its moisture absorption capability (Lee et al., 2009; Biswas et al., 2018; Lim et al., 2022).

Zeolites are crystalline, hydrated aluminosilicates of alkali and alkaline earth cations that form an infinite, open three-dimensional structure (Noori et al., 2006). The microporous crystalline structure of zeolites makes it possible to adsorb materials that fit through surface entry channels (Turan et al., 2008). Supportably, zeolites showed significant water absorption capability through their three-dimensional network of hydrophilic polymers (Yan et al., 2014; Zadeh et al., 2019). Therefore, numerous studies have been conducted to decrease litter moisture content by using illite and zeolite in broilers (Schneider et al., 2017; Chung and Choi, 2019).

However, most studies focused on the dietary effects of illite and zeolite, which decrease litter moisture and nitrogen content with improved growth performance in broilers (Safaeikatouli et al., 2011; Schneider et al., 2016; Abdelrahman et al., 2023). Moreover, there are only few studies about identifying the effects of spraying illite and zeolite in rice husks as litter (Chung and Choi, 2019). Therefore, the main objective of this study was to investigate and compare the effects of spraying illite and zeolite on litter quality, litter microflora, and FPD.

MATERIALS AND METHODS

Ethics Approval and Consent to Participate The protocol for this study was reviewed and approved by the Institutional Animal Care and Use Committee of Chungbuk National University, Cheongju, Korea (approval no. CBNUA-2107-23-01).

2. Source of Illite and Zeolite

The composition of illite is SiO₂, Al₂O₃, K₂O, Fe₂O₃, Na₂O, TiO₂, MgO, CaO, P₂O₅, MnO, respectively, 67.4%, 20.3%, 5.50%, 2.35%, 0.54%, 0.27%, 0.24%, 0.04%, 0.04%, and 0.01%, provided by YonggungIllite (Seoul, Korea). Zeolite is composited with SiO₂ and moisture, respectively, 63.23% and 8.19%, provided by Haedameun (Eumseong, Korea).

3. Experimental Design, Animals, and Housing

A total of 192 one-day-old Ross 308 broilers (initial body weight of 31.30±0.41 g) were obtained from a local hatchery (Dongsan hatchery, Cheonan, Korea) and used in this experiment for 28 days. All broilers were randomly allocated into four treatments in a randomized complete block design. Treatments were as follows: basal rice husk (CON), rice husk + 1% illite (calculated on a weight of litter; T1), rice husk + 1% zeolite (calculated on a weight of litter; T2), and rice husk + 0.5% illite + 0.5% zeolite (calculated on a weight of litter; T3). Each treatment had four replicates, with 12 birds per pen (W: 173 cm, D: 63 cm, H: 55 cm). Each pen was provided with 5 kg of rice husk as litter. Illite and zeolite were sprayed on the surface of the litter and dispersed by using a spreader at the beginning of the experiment. The experiment initiation temperature was 34±1°C, and after that, the temperature was gradually lowered to maintain 25 ± 1 °C. The lighting schedule was 23L:1D at 100 lux on d 1, 12L:12D at 30 lux on d 4 until week 2, and 8L:16D at 30 lux thereafter. All diets were formulated to meet or exceed National Research Council (1994) for the starter (1-7 d), grower (8-21 d), and finisher (22-28 d) periods. All broilers were given ad libitum access to diet and water throughout the experiments.

4. Litter Sample Collection

A litter sample was collected weekly at 5 random locations from each pen. In each pen, 5 sampling points were identified: 2 points at the front (in the proximity of the feeders and drinkers), 2 points at the back (away from the feeders and drinkers), and 1 point in the center. The random litter samples were thoroughly mixed, and 100 g was weighed into a plastic bag and refrigerated at 4° C until the samples were analyzed.

5. Litter Quality

To analyze moisture content, 2 g of litter samples from each pen were dried in an oven at 105° C for 8 h according to AOAC (2005). Nitrogen content was determined by the Dumas method (Jung et al., 2003) using a Vario EL Cube (Elementar Analyse System GmbH, Hanau, Germany).

6. Litter Microflora

To analyze the counts of litter microflora, litter samples were collected weekly in conical tubes. From the sample, 0.1 g was suspended in distilled water, homogenized, and diluted from 10^{-4} to 10^{-7} to count the number of bacteria. Evenly spread 100 µL of the diluted solution on the agar. *Escherichia coli* (*E. coli*) and *Salmonella* were analyzed for bacteria, and MacConkey agar (MB cell, Seoul, Korea) was used for *E. coli*, and BG Sulfa (MB cell, Seoul, Korea) agar was used for *Salmonella*. *E. coli* and *Salmonella* were cultured for 24 hours at 37 °C.

7. Footpad Dermatitis Scores

Footpad dermatitis was scored in all birds at the end of the experiment according to the type of lesion according to the Eichner et al. (2007) method. After euthanizing broilers, footpad lesions were scored on a scale from: no lesion (score 0), a lesion covering less than 25% of the sole (score 1), a large area lesion covering between 25% and 50% of the sole (score 2), and more than 50% of the plantar (score 3). Scores were assessed on both paws of the birds, and the raters were independently conducted by three observers. The average score for foot lesions was performed by turning the statistics.

8. Statistical Analysis

All data were statistically processed using the one-way ANOVA using JMP Pro 16 (SAS Institute, Cary, NC, USA), using each pen as the experimental unit. Differences among all treatment means were determined using the Tukey multiple-range test. The level of significance was established at P<0.05.

RESULTS

1. Litter Quality

As shown in Table 1, litter moisture content was significantly decreased (P < 0.05) in the T1, T2, and T3 groups compared with the CON group at week 4. In litter nitrogen, T1 group showed significantly lower (P < 0.05) litter nitrogen

Table 1. Effect of spraying illite and zeolite on litter moisture and nitrogen content in broiler's litter¹

Items (%)	CON	T1	T2	Т3	SE	P-value
Moisture						
1 weeks	20.45	18.88	19.25	20.84	1.999	0.882
2 weeks	32.11	31.34	35.68	24.56	3.594	0.196
3 weeks	30.82	33.52	36.48	32.64	2.909	0.585
4 weeks	45.35 ^a	34.21 ^b	34.81 ^b	34.40 ^b	2.684	0.015
Nitrogen						
1 weeks	0.88 ^a	0.65 ^b	0.88^{a}	0.84 ^a	0.023	<.0001
2 weeks	2.12 ^a	1.67 ^c	2.09 ^a	1.88 ^b	0.012	<.0001
3 weeks	2.51 ^a	1.91°	2.43 ^a	2.19 ^b	0.037	<.0001
4 weeks	2.79	2.85	2.55	2.85	0.283	0.857

Each treatment was provided 5 kg of rice husk as a litter.

The percentage of illite and zeolite was calculated on a weight of litter.

¹ CON, basal rice husk; T1, rice husk + 1% illite; T2, rice husk + 1% zeolite; T3, rice husk + 0.5% illite + 0.5% zeolite; SE, standard error.

^{a-c} Means within column with different superscripts differ significantly (P < 0.05).

content than the other groups at weeks 1, 2, and 3. In addition, T3 group showed a significantly lower (P<0.05) litter nitrogen content than the CON and T2 groups at weeks 2 and 3.

2. Litter Microflora

As shown in Table 2, the counts of *E. coli* in the litter were significantly decreased (P < 0.05) in the T1 group compared to the CON group at weeks 2 and 3. Also, the counts of *Salmonella* in the litter were significantly decreased (P < 0.05) in the T1 group than CON group at week 4.

3. Footpad Dermatitis

As shown in Table 3, the FPD score significantly de-

creased (P < 0.05) in the T1 group compared to the CON group. Also, illustration of footpad-dermatitis of each treatment were presented in Fig. 1.

DISCUSSION

1. Litter Quality

Litter moisture content is considered as an index of litter quality (Oluwaseyi, 2016). When continuous litter moisture contacts the skin, it softens the tissue and opens the collagen matrix of the epidermis, and it might facilitate the ingress of substances that initiate an immune response (Mayne et al., 2007). Also, it is well documented that continuous exposure

Table 2. Effect of spraying illite and zeolite on litter microflora in broiler's litter¹

Items (Log ₁₀ CFU/g)	CON	T1	T2	T3	SE	P-value
E. coli						
1 weeks	7.11	6.81	6.83	6.81	0.148	0.394
2 weeks	7.20 ^a	6.30 ^b	6.76 ^{ab}	6.75 ^{ab}	0.141	0.003
3 weeks	6.55ª	6.13 ^b	6.30 ^{ab}	6.25 ^{ab}	0.080	0.006
4 weeks	7.37	7.52	7.24	7.03	0.221	0.460
Salmonella						
1 weeks	6.17	6.75	6.37	6.87	0.340	0.439
2 weeks	6.25	6.19	6.51	6.59	0.331	0.791
3 weeks	7.06	6.65	7.12	6.60	0.286	0.458
4 weeks	7.03 ^a	6.09 ^b	6.15 ^{ab}	6.18 ^{ab}	0.233	0.022

Each treatment was provided 5 kg of rice husk as a litter.

The percentage of illite and zeolite was calculated on a weight of litter.

¹ CON, basal rice husk; T1, rice husk + 1% illite; T2, rice husk + 1% zeolite; T3, rice husk + 0.5% illite + 0.5% zeolite; *E. coli, Escherichia coli*; SE, standard error.

^{a,b} Means within column with different superscripts differ significantly (P<0.05).

Table 3. Effect of spraying illite and zeolite on footpad dermatitis score in broiler's litter¹

Score ²	CON	T1	T2	T3	SE	P-value
Average	1.88 ^a	1.42 ^b	1.63 ^{ab}	1.60^{ab}	0.083	0.002

The percentage of illite and zeolite was calculated on a weight of litter.

¹ CON, basal rice husk; T1, rice husk + 1% illite; T2, rice husk + 1% zeolite; T3, rice husk + 0.5% illite + 0.5% zeolite; SE, standard error.

 2 Lesion score: Lesion score was determined as follow: 0, no lesion; 1, lesion covering less than 25% of the sole of the foot large area lesion; 2, covering between 25% and 50% of the sole of the foot; 3, more than 50% of the lesion of the plantar.

Each treatment was provided 5 kg of rice husk as a litter.

^{a,b} Means within column with different superscripts differ significantly (P<0.05).

Fig. 1. Effect of spraying illite and zeolite on footpad dermatitis in each treatment at 28 days. CON, basal rice husk; T1, rice husk + 1% illite; T2, rice husk + 1% zeolite; T3, rice husk + 0.5% illite + 0.5% zeolite.

to wet litter significantly changes the morphology of the skin, causing pathological responses (Wu and Hocking, 2011).

In the current study, spraying illite and zeolite decreased litter moisture content by 10.54% to 11.14% compared to non-sprayed litter moisture content. Previous studies have reported that using aluminosilicates decreased litter moisture content by its high water-absorbing capabilities in broilers (Safaeikatouli et al., 2011; Gilani et al., 2016). Illite forms large specific areas, layered, and porous molecule structures, which increase the contact area with oxygen and water (Sarker and Yang, 2010). An increased contact area could provide higher aeration and an improved ventilation rate, which induces the evaporation of litter moisture content (Liu et al., 2007; Meng et al., 2021). Correlated with this study, previous studies have reported that spraying zeolite (250 g/kg and 10% of litter total weight, respectively) in litter decreased the 4%–9% of litter moisture content compared to

non-sprayed litter (Eleroğlu and Ylacin, 2005; Schneider et al., 2016). Zeolites absorb the water and cations through their specific porous structure, where moisture is captured (Coombs et al., 1997). According to the García (2010) study, zeolite could reduce the litter moisture content due to its reversible capacity for water absorption and it release into the atmosphere by evaporation. Therefore, the observation of a decrease in moisture content by spraying illite and zeolite might be attributed to the water absorption capabilities of illite and zeolite.

Over time, nitrogen accumulates in the litter due to broiler excreta, which is composed of feces and urine (Vilela et al., 2020). Nitrogen is constantly transformed by changes in bacterial activity, temperature, pH, and moisture in litter, and most of the percentage (40%-90%) is converted to ammonia in litter (Kelleher et al., 2002). Consequently, converted ammonia results in impaired litter quality and promotes the development of FPD (Choi and Moore, 2008; Stojčić et al., 2016). In the current study, spraying 1% of illite decreased the litter nitrogen content. This result is in agreement with Slamova et al. (2011), who reported that illite decreased the litter nitrogen content by absorption of ammonium ions due to their cation-exchange capacity and hydration properties. Also, Zhang et al. (2016) have reported that absorbents with a large surface area and cation exchange capacity could decrease litter nitrogen content, which is consistent with illite structure. Moreover, previous studies have reported that litter moisture and ammonia could be converted to ammonia-N by urea hydrolysis and microbial breakdown of uric acid in litter (Martins et al., 2013; Khosravinia et al., 2015). These authors suggest that reducing litter moisture content could decrease conversion to ammonia-N, which results in decreased litter nitrogen content. Therefore, the capabilities of illite in reducing litter moisture and absorbing ammonium ions might be reasonable for reducing litter nitrogen content in this study.

2. Litter Microflora

The most concerning point in litter is bacterial pathogens, such as *E. coli* and *Salmonella*, which could disseminate to broilers (Ruiz-Barrera et al., 2020). *E. coli* and *Salmonella* could exert metabolic activities in the litter, which cause re-

duced growth and impaired walking strength in poultry (Soliman et al., 2018). In the current study, spraying 1% of illite decreased the counts of E. coli and Salmonella, along with the litter moisture content. The exact mechanism of decreased counts of E. coli and Salmonella by spraying illite has not been previously documented. However, we guessed that a reduction in the counts of E. coli and Salmonella might be attributed to a decrease in litter moisture content. Litter moisture content is one of the major factors for E. coli and Salmonella to survive in litter (Sekeroğlu et al., 2013). Excessive litter moisture content creates favorable conditions for the multiplication of enteric pathogens such as E. coli and Salmonella (De Rezende et al., 2001). In contrast, when the litter moisture falls outside the optimum range for microbial growth and survival, it causes cellular damage and cell death (Soliman et al., 2009). According to Chang et al. (2020), increased counts of Salmonella and E. coli were observed when the litter moisture content induced from 17.78% to 54.34%. Consistently, previous studies have demonstrated that the survival and proliferation rates of E. coli and Salmonella increase as litter moisture content increases (Cools et al., 2001; Wilkinson et al., 2011). Thus, decreased counts of E. coli and Salmonella might be reasonable due to the reduced litter moisture content in this study.

3. Footpad Dermatitis

In the current study, spraying 1% of illite in broiler litter caused a significantly decreased FPD score compared to the non-supplementation of illite. This result is in line with the study of Banaszak et al. (2020), who reported that spraying 1% of aluminosilicates (4.50 kg/m²) decreased the FPD score in broilers. The main cause of FPD is litter ammonia, which is produced by moisture and nitrogen, dissolves in wet litter to create an irritant an alkaline solution for the footpads (Bilgil et al., 2009). Consequently, broilers contact with irritant alkaline solution, which causes "ammonia burns", a factor in FPD (Berg et al., 2004; Jacob et al., 2016). As we mentioned above, previous studies have reported that reducing litter moisture and nitrogen content decreased FPD scores, which is consistent with our results (Youssef et al., 2011; Da Costa et al., 2014; Taira et al., 2014). Moreover, previous studies have demonstrated that decreased litter pH reduced the FPD with diminished litter moisture and nitrogen content (Kaukonene et al., 2016; Stojčić et al., 2016; Zikic et al., 2017). According to the Toledo et al. (2020), litter pH could reduce the litter ammonia content by diminishing free ammonia without charge and the form of ammonium ions in the litter. Therefore, the decrease of FPD score in this study might be reasonable due to reduction of litter moisture and nitrogen by spraying 1% illite.

SUMMARY

In the current study, we found that spraying illite and combination of illite and zeolite increased litter quality. In particular, spraying 1% illite decreased the counts of pathogenic bacteria counts, and FPD scores compared to CON treatment. In conclusion, spraying illite could be an ideal way to improve litter quality and decrease FPD in broilers.

ACKNOWLEDGMENTS

Following are results of a study on the "Leaders in Industry-university Cooperation 3.0" Project, supported by the Ministry of Education and National Research Foundation of Korea.

ORCID

Sehyun Park Jihwan Lee Dongcheol Song Seyeon Chang Jaewoo An Kyeongho Jeon Hyuck Kim Jinho Cho

https://orcid.org/0000-0002-6253-9496 https://orcid.org/0000-0001-8161-4853 https://orcid.org/0000-0002-5704-603X https://orcid.org/0000-0002-5238-2982 https://orcid.org/0000-0002-5602-5499 https://orcid.org/0000-0003-2321-3319 https://orcid.org/0000-0002-5280-0734 https://orcid.org/0000-0001-7151-0778

REFERENCES

Abdelrahman MM, Al-Baadani HH, Qaid MM, Al-Garadi MA, Suliman GM, Alobre MM, Al-Mufarrej SI 2023 Using natural zeolite as a feed additive in broilers' Diets for enhancing growth performance, carcass characteristics, and meat quality traits. Life 13(7):1548.

- AMER MM 2020 Footpad dermatitis (FPD) in chickens. Korean J. Food Health Converg 6(4):11-16.
- An J, Lee J, Song M, Oh H, Kim Y, Chang S, Cho J 2023 Effects of supplemental different clay minerals in broiler chickens under cyclic heat stress. J Anim Sci Technol 65 (1):113.
- AOAC 2005 Official Methods of Analysis of the Association of Analytical Chemists International. Official Methods: Gaithersburg, MD, USA.
- Berg C 2004 Pododermatitis and hock burn in broiler chickens. In Measuring and Auditing Broiler Welfare. Page 37-49 Wallingford UK: CABI publishing.
- Bilgili SF, Hess JB, Blake JP, Macklin KS, Saenmahayak B, Sibley JL 2009 Influence of bedding material on footpad dermatitis in broiler chickens. J Appl Poult Res 18(3): 583-589.
- Biswas AA, Lee SS, Mamuad LL, Kim SH, Choi YJ, Lee C, Lee SS 2018 Effects of illite supplementation on *in vitro* and *in vivo* rumen fermentation, microbial population, and methane emission of Hanwoo steers fed high concentrate diets. Anim Sci J 89(1):114-121.
- Chang R, Pandey P, Li Y, Venkitasamy C, Chen Z, Gallardo R, Jay-Russell M 2020 Assessment of gaseous ozone treatment on *Salmonella* Typhimurium and *Escherichia coli* O157:H7 reductions in poultry litter. Waste Manag 117:42-47.
- Chen J, Tellez G, Escobar J 2016 Identification of biomarkers for footpad dermatitis development and wound healing. Front Cell Infect Microbiol: 6-26.
- Choi IH, Moore PA 2008 Effect of various litter amendments on ammonia volatilization and nitrogen content of poultry litter. J Appl Poult Res 17(4):454-462.
- Chung YH, Choi IH 2019 Comparison of bentonite and illite on the growth performance and litter quality of duck. Adv. Anim. Vet. Sci 7(6):522-525.
- Clark S, Hansen G, McLean P, Bond Jr, Wakeman W, Meadows R, Buda S 2002 Pododermatitis in turkeys. Avian Dis 46(4):1038-1044.
- Cools D, Merckx R, Vlassak K, Verhaegen J 2001 Survival

of *E. coli* and *Enterococcus* spp. derived from pig slurry in soils of different texture. Appl Soil Ecol 17(1):53-62.

- Coombs DS, Alberti A, Armbruster T, Artioli G, Colella C, Galli E, Vezzalini G 1997 Recommended nomenclature for zeolite minerals, report of the subcommittee on zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist 35(6):1571-1606.
- Da Costa MJ, Grimes JL, Oviedo-Rondón EO, Barasch I, Evans C, Dalmagro M, Nixon J 2014 Footpad dermatitis severity on turkey flocks and correlations with locomotion, litter conditions, and body weight at market age. J Appl Poult Res 23(2):268-279.
- De Rezende CE, Mallinson ET, Tablante NL, Morales R, Park A, Carr LE, Joseph SW 2001 Effect of dry litter and airflow in reducing *Salmonella* and *Escherichia coli* populations in the broiler production environment. J Appl Poult Res 10(3):245-251.
- De Toledo TD, Roll AA, Rutz F, Dallmann HM, Dai Pra MA, Leite FP, Roll VF 2020 An assessment of the impacts of litter treatments on the litter quality and broiler performance: a systematic review and meta-analysis. PLoS One 15(5):e0232853.
- Đukić Stojčić M, Bjedov S, Žikić D, Perić L, Milošević N 2016 Effect of straw size and microbial amendment of litter on certain litter quality parameters, ammonia emission, and footpad dermatitis in broilers. Arch Anim Breed 59(1):131-137.
- Eichner G, Vieira SL, Torres CA, Coneglian JL, Freitas DM, Oyarzabal OA 2007 Litter moisture and footpad dermatitis as affected by diets formulated on an all-vegetable basis or having the inclusion of poultry by-product. J Appl Poult Res 16(3):344-350.
- Eleroğlu H, Yalçın H 2005 Use of natural zeolite-supplemented litter increased broiler production. S Afr J Anim Sci 35(2):90-97.
- Garcês AP, Afonso SM, Chilundo A, Jairoce CTS 2013 Evaluation of different litter materials for broiler production in a hot and humid environment: 1. Litter characteristics and quality. J Appl Poult Res 22(2):168-176.
- García HC 2010 La aplicación de Zeolita en la producción

avícola: Revisión. Revista de Investigación Agraria y Ambiental 1(1):17-23.

- Garcia RG, Almeida Paz IC, Caldara FR, Nääs IA, Bueno LG, Freitas LW, Sim S 2012 Litter materials and the incidence of carcass lesions in broilers chickens. Rev Bras Cienc Avic 14:27-32.
- Gilani A, Kermanshahi H, Golian A, Seifi S 2016 Appraisal of the impact of aluminosilicate use on the health and performance of poultry. Turk J Vet 40(3):255-262.
- Hatch CD, Wiese JS, Crane CC, Harris KJ, Kloss HG, Baltrusaitis J 2012 Water adsorption on clay minerals as a function of relative humidity: application of BET and Freundlich adsorption models. Langmuir 28(3):1790-1803.
- Jacob FG, Baracho MS, Nääs IA, Lima NS, Salgado DD, Souza R 2016 Risk of incidence of hock burn and pododermatitis in broilers reared under commercial conditions. Rev Bras Cienc Avic 18:357-362.
- Jung S, Rickert DA, Deak NA, Aldin ED, Recknor J, Johnson LA, Murphy PA 2003 Comparison of Kjeldahl and Dumas methods for determining protein contents of sovbean products. J Am Oil Chem Soc 80:1169-1173.
- Kaukonen E, Norring M, Valros A 2016 Effect of litter quality on foot pad dermatitis, hock burns and breast blisters in broiler breeders during the production period. Avian Pathol 45(6):667-673.
- Khosravinia H, Azarfar A, Sokhtehzary A 2015 Effects of substituting fish meal with poultry by-product meal in broiler diets on blood urea and uric acid concentrations and nitrogen content of litter. J Appl Anim Res 43(2): 191-195.
- Kjaer JB, Su G, Nielsen BL, Sørensen P 2006 Foot pad dermatitis and hock burn in broiler chickens and degree of inheritance. Poult Sci 85(8):1342-1348.
- Lee SR, Lee S, Chang KT, Kim JW 2009 Effects of dietary supplementation of illite on humoral immunity against *Salmonella typhimurium* flagella antigen in laying hens. Korean J Poult Sci 36(3):201-206.
- Lim CI, Kim JE, Lee KB 2023 Interactive effects of dietary supplementation between illite and probiotic on productive performance, intestinal microflora, and blood profiles of laying hens. Anim Sci J 94(1):e13805.

- Liu Z, Wang L, Beasley D, Oviedo E 2007 Effect of moisture content on ammonia emissions from broiler litter: a laboratory study. J Atmos Chem 58:41-53.
- Madigan MT, Martinko JM, Parker J 1997 Brock Biology of Microorganisms (Vol. 11). Upper Saddle River, NJ: Prentice Hall.
- Manangi MK., Vazquez-Anon M, Richards JD, Carter S, Buresh RE, Christensen KD 2012 Impact of feeding lower levels of chelated trace minerals versus industry levels of inorganic trace minerals on broiler performance, yield, footpad health, and litter mineral concentration. J Appl Poult Res 21(4):881-890.
- Martins VL, Caley M, O'Toole EA 2013 Matrix metalloproteinases and epidermal wound repair. Cell Tissue Res 351:255-268.
- Mayne RK, Else RW, Hocking PM 2007 High litter moisture alone is sufficient to cause footpad dermatitis in growing turkeys. Br Poult Sci 48(5):538-545.
- McConville CJ, Lee WE 2005 Microstructural development on firing illite and smectite clays compared with that in kaolinite. J Am Ceram Soc 88(8):2267-2276.
- Meng Q, Wang S, Niu Q, Yan H, Li G, Zhu Q, Li Q 2021 Illite/smectite clay regulating laccase encoded genes to boost lignin decomposition and humus formation in composting habitats revealed by metagenomics analysis. Bioresour Technol 338:125546.
- Michel V, Prampart E, Mirabito L, Allain V, Arnould C, Huonnic D, Albaric O 2012 Histologically validated footpad dermatitis scoring system for use in chicken processing plants. Br Poult Sci 53(3):275-281.
- Mohsen Zadeh P, Saghravani SF, Asadollahfardi G 2019 Mechanical and durability properties of concrete containing zeolite mixed with meta kaolin and micro nano bubbles of water. Struct. Concr 20(2):786-797.
- Noori M, Zendehdel M, Ahmadi A 2006 Using natural zeolite for the improvement of soil salinity and crop yield. Toxicol Environ Chem 88(1):77-84.
- NRC-National Research Council 1994 Nutrient requirements of poultry.
- Oladeinde A, Awosile B, Woyda R, Abdo Z, Endale D, Strickland T, Cook K 2023 Management, and environ-

mental factors influence the prevalence and abundance of food-borne pathogens and commensal bacteria in peanut hull-based broiler litter. Poult Sci 102(2):102313.

- Oluwaseyi AM 2016 Application of dietary bentonite clay as feed additive on feed quality, water quality and production performance of African catfish (*Clarias gariepinus*).
- Ruiz-Barrera O, Ontiveros-Magadan M., Anderson RC, Byrd JA, Hume ME, Latham EA, Castillo-Castillo Y 2020 Nitrotreatment of composted poultry litter; effects on *Salmonella*, *E. coli* and nitrogen metabolism. Bioresour Technol 310:123459.
- Safaeikatouli M, Jafariahangari Y, Baharlouei A 2011 An evaluation on the effects of dietary kaolin and zeolite on broilers blood parameters, T4, TSH and growth hormones. Pak J Nutr 10(3):233-237.
- Safaeikatouli M, Jafariahangari Y, Baharlouei A, Shahi G 2011 The efficacy of dietary inclusion of sodium bentonite on litter characteristics and some blood hormones in broiler chickens. J Biol Sci 11(2):216-220.
- Sarker MS, Yang CJ 2010 Propolis and illite as feed additives on performance and blood profiles of pre-weaning Hanwoo calves. J Anim Vet Adv 9(19):2526-2531.
- Schneider AF, Almeida DD, Yuri FM, Zimmermann OF, Gerber MW, Gewehr CE 2016 Natural zeolites in diet or litter of broilers. Br Poult Sci 57(2):257-263.
- Schneider AF, Zimmermann OF, Gewehr CE 2017 Zeolites in poultry and swine production. Ciência Rural 47: e20160344.
- Şekeroğlu A, Eleroğlu H, Sarıca M, Camcı Ö 2013 Based materials and base material management used in production on the ground. J Poult Res 10(1):25-34.
- Seung-Hyeon Choi, Moon-Cheol Choi, Jeong-Hoo Lee 2009 A study on illite and pyrophyllite from sedimentary rocks in the Taebaek area. Korean Petrological Society Academic Conference Proceedings 17-19.
- Shepherd EM, Fairchild BD 2010 Footpad dermatitis in poultry. Poult Sci 89(10):2043-2051.
- Slamova R, Trckova M, Vondruskova H, Zraly Z, Pavlik I 2011 Clay minerals in animal nutrition. Appl Clay Sci 51(4):395-398.
- Soliman ES, Sallam NH, Abouelhassan EM 2018 Effective-

ness of poultry litter amendments on bacterial survival and *Eimeria* oocyst sporulation. Vet World 11(8):1064.

- Soliman ES, Taha EG, Sobieh MAA, Reddy PG 2009 The influence of ambient environmental conditions on the survival of *Salmonella enteric* serovar *typhimurium* in poultry litter. Int J Poult Sci 8(9):848-852.
- Taira K, Nagai T, Obi T, Takase K 2014 Effect of litter moisture on the development of footpad dermatitis in broiler chickens. J Vet Med Sci 76(4):583-586.
- Turan NG 2008 The effects of natural zeolite on salinity level of poultry litter compost. Bioresour Technol 99(7): 2097-2101.
- Vieira MM, Ribeiro AML, Kessler AM, Moraes ML, Kunrath MA, Ledur VS 2013 Different sources of dietary zinc for broilers submitted to immunological, nutritional, and environmental challenge. J Appl Poult Res 22(4): 855-861.
- Vilela MD, Gates RS, Souza CF, Teles Junior CG, Sousa FC 2020 Nitrogen transformation stages into ammonia in broiler production: sources, deposition, transformation, and emission into the environment. Dyna 87(214):221-228.
- Wilkinson KG, Tee E, Tomkins RB, Hepworth G, Premier R 2011 Effect of heating and aging of poultry litter on the persistence of enteric bacteria. Poult Sci 90(1):10-18.
- Wu K, Hocking PM 2011 Turkeys are equally susceptible to foot pad dermatitis from 1 to 10 weeks of age and foot pad scores were minimized when litter moisture was less than 30%. Poult Sci 90(6):1170-1178.
- Yan Z, Lin Z, Kai M, Guozhu M 2014 The surface modification of zeolite 4A and its effect on the water-absorption capability of starch-g-poly (acrylic acid) composite. Clays Clay Miner 62(3):211-223.
- Youssef IM, Beineke A, Rohn K, Kamphues J 2011 Effects of litter quality (moisture, ammonia, uric acid) on development and severity of foot pad dermatitis in growing turkeys. Avian Dis 55(1):51-58.
- Zhang C, Alexis WD, Li H, Guo M 2016. Using poultry litter derived biochar as litter amendment to control ammonia emissions. Pages 1 In: 2016 ASABE Annual International Meeting. Orlando, FL, USA.

Zikic D, Djukic-Stojcic M, Bjedov S, Peric L, Stojanovic S, Uscebrka G 2017 Effect of litter on development and severity of foot-pad dermatitis and behavior of broiler chickens. Rev Bras Cienc Avic 19:247-254.

Received Oct. 29, 2023, Revised Dec. 08, 2023, Accepted Dec. 08, 2023