• Title/Summary/Keyword: Zenith

Search Result 222, Processing Time 0.032 seconds

Preliminary Analysis on the Effects of Tropospheric Delay Models on Geosynchronous and Inclined Geosynchronous Orbit Satellites

  • Lee, Jinah;Park, Chandeok;Joo, Jung-Min
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.371-377
    • /
    • 2021
  • This research proposes the best combination of tropospheric delay models for Korean Positioning System (KPS). The overall results are based on real observation data of Japanese Quasi-Zenith satellite system (QZSS), whose constellation is similar to the proposed constellation of KPS. The tropospheric delay models are constructed as the combinations of three types of zenith path delay (ZPD) models and four types of mapping functions (MFs). Two sets of International GNSS Service (IGS) stations with the same receiver are considered. Comparison of observation residuals reveals that the ZPD models are more influential to the measurement model rather than MFs, and that the best tropospheric delay model is the combination of GPT3 with 5 degrees grid and Vienna Mapping Function 1 (VMF1). While the bias of observation residual depends on the receivers, it still remains to be further analyzed.

The Parallax Correction to Improve Cloud Location Error of Geostationary Meteorological Satellite Data (정지궤도 기상위성자료의 구름위치오류 개선을 위한 시차보정)

  • Lee, Won-Seok;Kim, Young-Seup;Kim, Do-Hyeong;Chung, Chu-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.99-105
    • /
    • 2011
  • This research presents the correction method to correct the location error of cloud caused by parallax error, and how the method can reduce the position error. The procedure has two steps: first step is to retrieve the corrected satellite zenith angle from the original satellite zenith angle. Second step is to adjust the location of the cloud with azimuth angle and the corrected satellite zenith angle retrieved from the first step. The position error due to parallax error can be as large as 60km in case of 70 degree of satellite zenith angle and 15 km of cloud height. The validation results by MODIS(Moderate-Resolution Imaging Spectrometer) show that the correction method in this study properly adjusts the original cloud position error and can increase the utilization of geostationary satellite data.

Accuracy of inter-arch measurements performed on digital models generated using two types of intraoral scanners: Ex vivo study

  • Yoo, Jo-Kwang;Kang, Yoon-Koo;Lee, Su-Jung;Kim, Seong-Hun;Moon, Cheol-Hyun
    • The Journal of the Korean dental association
    • /
    • v.58 no.4
    • /
    • pp.194-205
    • /
    • 2020
  • Objective: The purpose of this study was to evaluate the accuracy of the inter-arch relationship of digital models generated using two types of intraoral scanners. Methods: In total, 34 plaster model samples were used. Two corresponding digital models were created using two types of intraoral scanners. A total of 15 variables were measured. The plaster model was directly measured using a digital caliper, while the digital models were measured using a software. The accuracy of the measurements was evaluated using repeated measures analysis of variance and the Friedman test. Results: Among the 15 measurements, 6 measurements[Overjet, Overbite, DZ_11-41 (Distance between the gingival zenith of maxillary right central incisor and mandibular right central incisor), DZ_16-46 (Distance between the gingival zenith of maxillary right first molar and mandibular right first molar), DZ_13-33 (Distance between the gingival zenith of maxillary right canine and mandibular left canine), and DZ_23-43 (Distance between the gingival zenith of maxillary left canine and mandibular right canine)]showed statistically significant differences, with DZ_23-43 showing the largest difference of 0.18 mm. The other measurements showed no statistically significant differences. Conclusions: Regardless of the type of scanner used for preparation, digital models can be used as clinically acceptable alternatives to conventional plaster models.

  • PDF

Improvement of GPS PWV retrieval capability using the reverse sea level corrections of air-pressure (기압의 역해면 경정 보정을 이용한 GPS PWV 복원 능력 개선)

  • Song, Dong-Seob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.535-544
    • /
    • 2009
  • Signals from the Global Positioning System(GPS) satellite are used to retrieve the integrated amount of water vapor or the precipitable water vapor(PWV) along the path between a transmitting satellite and ground-based receiver. In order to retrieve the PWV from GPS signal delay in the troposphere, the actual zenith wet delay, which can be derived by extracting the zenith total delay and subtracting the actual zenith hydrostatic delay computed using surface pressure observing, will be needed. Since it has been not co-located between GPS permanent station and automated weather station, the air-pressure on the mean sea level has been used to determine the actual zenith hydrostatic delay. The directly use of this air-pressure has been caused the dilution of precision on GPS PWV retrieval. In this study, Korean reverse sea level correction method of air-pressure was suggested for the improving of GPS PWV retrieval capability and the accuracy of water vapor estimated by GPS was evaluated through a comparison with radiosonde PWV.

A Comparison of Correction Models for the Prediction of Tropospheric Propagation Delay of GPS Signals (GPS 신호의 대류층 지연 예측을 위한 보정모델의 비교)

  • 이용창
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.3
    • /
    • pp.283-291
    • /
    • 2002
  • Since GPS's SA cancellation, the interest is converged in correction of errors such as atmospheric delay and multipath that weight had been small relatively, which can improve the accuracy of positioning through modelling research. The aim of this study have an extensive comparison of the various tropospheric delay models (Goad&Goodman, A&K, Hopfield and Sasstamoinen) and mapping functions(Niell, Chao, and Marini). Expecially, the tropospheric delay amounts by change of the GPS satellite elevations, and the delay by various combination between zenith delay models and mapping functions, compared and examined. For this, programmed the total delay models and the combined models which can be described as a product of the delay at the zenith and a mapping function. The result of study, especially, as the minimum elevation of included data is reduced under $10^{\circ}$, it was considered to be reasonable that the prediction of tropospheric delay considering combination and mapping character of functions about the transition of the zenith delay to a delay with arbitrary zenith angle.

The comparison of the accuracy of temporary crowns fabricated with several 3D printers and a milling machine

  • Junsik Lee;Sungwon Ju;Jihyung Kim;Sion Hwang;Jinsoo Ahn
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.2
    • /
    • pp.72-79
    • /
    • 2023
  • PURPOSE. The purpose of this in vitro study was to compare the accuracy of various 3D printers and a milling machine. MATERIALS AND METHODS. The die model was designed using CAD (Autodesk Inventor 2018 sp3). The 30 ㎛ cement space was given to the die and the ideal crown of the mandibular left first molar was designed using CAD (ExoCAD). The crowns were produced using the milling machine (Imes-icore 250i) and the 3D printers (Zenith U, Zenith D, W11) and they were divided into four groups. In all groups, the interior of each crown was scanned (Identica blue) and superimposed (Geomagic Control X) with the previously designed die. The difference between the die and the actual crown was measured at specific points. The Kruskal-Wallis test, the Mann-Whitney test, and Bonferroni's method were performed with a statistical analysis software (P < .008 in inter-group comparison P < .001 in intra-group comparison). RESULTS. In all groups, the center of the occlusal area and the anti-rotational dimple area showed significantly greater difference and the marginal area showed the smallest difference comparatively. The mean value of the difference in each area and the sum of the differences were higher in order of W11, Imes-icore 250i, Zenith D, and Zenith U. CONCLUSION. The digital light processing (DLP) method shows higher accuracy compared to the sereolithography (SLA) method using the same resin material.

Pecipitable Water Vapor Change Obtained From GPS Data

  • Kingpaiboon, Sununtha;Satomura, Mikio;Horikawa, Mayumi;Nakaegawa, Tosiyuki;Shimada, Seiichi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.384-386
    • /
    • 2003
  • GPS observation has been performed at Khon Kaen in northeast Thailand to investigate the Precipitable Water Vapor (PWV) change since August 2001 by using a Trimble 4000SSi receiver. The data obtained in the period from March to June in 2002 were processed by using CAMIT software to obtain the Zenith Tropospheric Delay (ZTD) at every one hour referring to some IGS stations around Thailand. We estimated the Zenith Hydrostatic Delay (ZHD) at every three hours with barometer data at Khon Kaen of Thai Meteorological Department, The Zenith Wet Delay (ZWD) was obtained by subtracting ZHD from ZTD and PWV can be calculated from ZTD. The results obtained shows that PWV changes with a large amplitude in March and April before the monsoon onset, and also we can see steep PWV increases before rain and decreases after rain. In May and June after the onset, the PWV is almost constant to be 60 to 70 mm, but there is a semi-diurnal change which has high PWV values at about 8 and 20 o'clock in local time.

  • PDF

A Study on the Characteristics of Sunglint in LongWave InfraRed Band (원적외선 대역의 태양 직사광 해수면 반사신호 특성 연구)

  • Kim, Kyung Ha
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.306-314
    • /
    • 2018
  • In maritime environment, it is necessary to understand the characteristics of sunglint since it may degrade the target detection performance of the infrared sensor mounted weapons. In this paper, sunglint in LWIR band is modeled using the slope distribution of the sea surface, and is verified by comparing the radiance of a simulated result with that of the real world. According to the simulation, sunglint is critical when the solar zenith angle is over $60^{\circ}$. The peak radiance of sunglint grows as the solar zenith angle increases until it reaches $83^{\circ}$ and has a large difference depending on the solar zenith angle when the wind speed is small. Finally, seasonal and temporal characteristics of sunglint effects are analyzed. In summer, sunglint is dominant in the horizon near the solar azimuth right after sunrise and before sunset. However, in winter, the influence of sunglint lasts even during the daytime since the elevation of the sun is much lower than in summer.