• 제목/요약/키워드: Zebrafish embryo

검색결과 42건 처리시간 0.027초

하수처리시설 방류수 내 잔류 향정신성 의약품의 독성평가를 위한 zebrafish의 행동성 변화 연구 (A Study on the Behavior Change of Zebrafish For Toxicity Evaluation of Residual Psychoactive Medication in Wastewater Treatment Plant Effluent)

  • 윤효직;김민재;김종락;김성표
    • 한국물환경학회지
    • /
    • 제35권6호
    • /
    • pp.574-579
    • /
    • 2019
  • As interest in health issues increases, it is imperative to ensure good water quality from wastewater treatment plant effluent to preserve environmental health. In particular, currently there is a lack of water ecosystem risk assessment on pharmaceutical substances remaining in effluent. In this study, antidepressant escitalopram (ESC), antiepileptic carbamazepine (CBZ) and lead, which impact the behavior of aquatic organisms, were used to test their impact on the potential behavior of zebrafish. Zebrafish have been widely used in toxicological assessment studies due to the ease of handlinggenerically and genetically. It was possible to observe changes in the growth of organisms through monitoring the embryos' cognitive and behavior assessment. In this study, the embryo lethal dose test showed that the lethal concentration of ESC and CBZ was at 10 ppb, which is below the water quality criterion (100 ppb), increased by 32.5 % and 40 %, respectively. In the cognitive test, it was found that the cognitive ability function decreased by 22 % and 17% for ESC(500 ppb) and CBZ(1,000 ppb) respectively relative to control. Based on these results, it is necessary to initiate efforts to remove these trace pollutants from sewage treatment facilities to protect the health of aquatic organisms.

Positional Cloning of Novel Genes in Zebrafish Developmental Mutants

  • Kim, Cheol-Hee
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2003년도 제3회 국제심포지움 및 학술대회
    • /
    • pp.24-25
    • /
    • 2003
  • The zebrafish (Danio rerio) is now the pre-eminent vertebrate model system for clarification of the roles of specific genes and signaling pathways in development. I will talk about positional cloning of two developmental mutants in zebrafish. The first mutant is headless: The vertebrate organizer can induce a complete body axis when transplanted to the ventral side of a host embryo by virtue of its distinct head and trunk inducing properties. Wingless/Wntantagonists secreted by the organizer have been identified as head inducers. Their ectopic expression can promote head formation, whereas ectopic activation of Wnt signalling during early gastrulation blocks head formation. These observations suggest that the ability of head inducers to inhibit Wntsignalling during formation of anterior structures is what distinguishes them from trunk inducers that permit the operation of posteriorizing Wnt signals. I describe the zebrafish headless (hdl) mutant and show that its severe head defects are due to a mutation in T-cell factor-3 (Tcf3), a member of the Tcf/Lef family. Loss of Tcf3 function in the hdl mutant reveals that hdl represses Wnt target genes. I provide genetic evidence that a component of the Wntsignalling pathway is essential in vertebrate head formation and patterning. Second mutant is mind bomb: Lateral inhibition, mediated by Notch signaling, leads to the selection of cells that are permitted to become neurons within domains defined by proneuralgene expression. Reduced lateral inhibition in zebrafish mib mutant embryos permits too many neural progenitors to differentiate as neurons. Positional cloning of mib revealed that it is a gene in the Notch pathway that encodes a RING ubiquitin ligase. Mib interacts with the intracellular domain of Delta to promote its ubiquitylation and internalization. Cell transplantation studies suggest that mib function is essential in the signaling cell for efficient activation of Notch in neighboring cells. (중략)

  • PDF

Rnf152 Is Essential for NeuroD Expression and Delta-Notch Signaling in the Zebrafish Embryos

  • Kumar, Ajeet;Huh, Tae-Lin;Choe, Joonho;Rhee, Myungchull
    • Molecules and Cells
    • /
    • 제40권12호
    • /
    • pp.945-953
    • /
    • 2017
  • We report the biological functions of a zebrafish homologue of RING-finger protein 152 (rnf152) during embryogenesis. rnf152 was initially identified as a brain-enriched E3 ligase involved in early embryogenesis of zebrafish. Expression of rnf152 was ubiquitous in the brain at 24 hpf but restricted to the eyes, midbrain-hindbrain boundary (MHB), and rhombomeres at 48 hpf. Knockdown of rnf152 in zebrafish embryos caused defects in the eyes, MHB, and rhombomeres (r1-7) at 24 hpf. These defects in rnf152-deficient embryos were analyzed by whole-mount in situ hybridization (WISH) using neuroD, deltaD, notch1a, and notch3 probes. NeuroD expression was abolished in the marginal zone, outer nuclear layer (ONL), inner nuclear layer (INL), and ganglion cell layer (GCL) of the eyes at 27 hpf. Furthermore, deltaD and notch1a expression was remarkably reduced in the ONL, INL, subpallium, tectum, cerebellum, and rhombomeres (r1-7) at 24 hpf, whereas notch3 expression was reduced in the tectum, cerebellum, and rhombomeres at 24 hpf. Finally, we confirmed that expression of Notch target genes, her4 and ascl1a, also decreased significantly in these areas at 24 hpf. Thus, we propose that Rnf152 is essential for development of the eyes, midbrain and hindbrain, and that Delta-Notch signaling is involved.

Embryonic Zebrafish Model - A Well-Established Method for Rapidly Assessing the Toxicity of Homeopathic Drugs - Toxicity Evaluation of Homeopathic Drugs Using Zebrafish Embryo Model -

  • Gupta, Himanshu R;Patil, Yogesh;Singh, Dipty;Thakur, Mansee
    • 대한약침학회지
    • /
    • 제19권4호
    • /
    • pp.319-328
    • /
    • 2016
  • Objectives: Advancements in nanotechnology have led to nanoparticle (NP) use in various fields of medicine. Although the potential of NPs is promising, the lack of documented evidence on the toxicological effects of NPs is concerning. A few studies have documented that homeopathy uses NPs. Unfortunately, very few sound scientific studies have explored the toxic effects of homeopathic drugs. Citing this lack of high-quality scientific evidence, regulatory agencies have been reluctant to endorse homeopathic treatment as an alternative or adjunct treatment. This study aimed to enhance our insight into the impact of commercially-available homeopathic drugs, to study the presence of NPs in those drugs and any deleterious effects they might have, and to determine the distribution pattern of NPs in zebrafish embryos (Danio rerio). Methods: Homeopathic dilutions were studied using high-resolution transmission electron microscopy with selected area electron diffraction (SAED). For the toxicity assessment on Zebrafish, embryos were exposed to a test solution from 4 - 6 hours post-fertilization, and embryos/larvae were assessed up to 5 days post-fertilization (dpf ) for viability and morphology. Toxicity was recorded in terms of mortality, hatching delay, phenotypic defects and metal accumulation. Around 5 dpf was found to be the optimum developmental stage for evaluation. Results: The present study aimed to conclusively prove the presence of NPs in all high dilutions of homeopathic drugs. Embryonic zebrafish were exposed to three homeopathic drugs with two potencies (30CH, 200CH) during early embryogenesis. The resulting morphological and cellular responses were observed. Exposure to these potencies produced no visibly significant malformations, pericardial edema, and mortality and no necrotic and apoptotic cellular death. Conclusion: Our findings clearly demonstrate that no toxic effects were observed for these three homeopathic drugs at the potencies and exposure times used in this study. The embryonic zebrafish model is recommended as a well-established method for rapidly assessing the toxicity of homeopathic drugs.

Zebrafish Dnd protein binds to 3'UTR of geminin mRNA and regulates its expression

  • Chen, Shu;Zeng, Mei;Sun, Huaqin;Deng, Wenqian;Lu, Yilu;Tao, Dachang;Liu, Yunqiang;Zhang, Sizhong;Ma, Yongxin
    • BMB Reports
    • /
    • 제43권6호
    • /
    • pp.438-444
    • /
    • 2010
  • Dnd (dead end) gene encodes an RNA binding protein and is specifically expressed in primordial germ cells (PGCs) as a vertebrate-specific component of the germ plasma throughout embryogenesis. By utilizing a technique of specific nucleic acids associated with proteins (SNAAP), 13 potential target mRNAs of zebrafish Dnd (ZDnd) protein were identified from 8-cell embryo, and 8 target mRNAs have been confirmed using an RT-PCR analysis. Of the target mRNAs, the present study is focused on the regulation of geminin, which is an inhibitor of DNA replication. Using electrophoretic mobility shift assay (EMSA), we demonstrated that ZDND protein bound the 67-nucleotide region from 864 to 931 in the 3'UTR of geminin mRNA, a sequence containing 60.29% of uridine. Results from a dual-luciferase assay in HEK293 cells showed that ZDND increases the translation of geminin. Taken together, the identification of target mRNA for ZDnd will be helpful to further explore the biological function of Dnd in zebrafish germ-line development as well as in cancer cells.

배지에 따른 제브라피쉬(Danio rerio) 배아 유래세포의 성장 효과에 관한 연구 (Effect of Culture Media on Embryonic Cell Growth in Zebrafish, Danio rerio)

  • 이기영;김종연;조수근
    • 한국발생생물학회지:발생과생식
    • /
    • 제12권1호
    • /
    • pp.51-56
    • /
    • 2008
  • 제브라피쉬 배아 유래세포의 최적 성장조건을 확립하기 위해 3종류의 배지 DMEM, K-NAC, D-NAC 그룹에서의 세포 성장률을 비교하였다. 실험 결과, 접종밀도에 따른 성장률의 경우, DMEM에 비해 K-NAC 그룹에서 초기 접종 효율이 높게 나타났으며, 후기 성장률은 DMEM 그룹에서 높게 나타났다. K-NAC, DMEM 그룹 모두 FBS 농도에 의한 성장차는 보이지 않았으며, 0.1% embryo extract를 첨가한 배지에서 효과는 낮게 나타났으나 1% trout serum 첨가한 경우 매우 높은 성장률을 보였다(p<0.05). $2-3{\times}10^5$ 밀도로 접종한 그룹에서는 유의차가 없었으나, $4{\sim}5{\times}10^5$ 밀도에서는 DMEM 그룹이 K-NAC 그룹보다 다소 높은 성장률을 보였다(p<0.1). DMEM과 D-NAC 그룹에서의 FBS 농도에 따른 성장률을 비교한 결과, FBS 농도에 따른 성장차는 유의하지 않았으나(p<0.05), D-NAC의 모든 실험군이 DMEM 그룹에 비해 높은 성장률을 보였다(p<0.05).

  • PDF

Selective and Random Patterning of Programmed Cell Death in Zebrafish Embryonic Development

  • Hwang, Chang-Nam;Kim, Joon;Lee, Sang-Ho
    • 한국수정란이식학회:학술대회논문집
    • /
    • 한국수정란이식학회 2002년도 국제심포지엄
    • /
    • pp.118-118
    • /
    • 2002
  • Programmed cell death (PCD) is thought as a well-controlled process by which unwanted cells are selectively eliminated. During the last decade many researches have elucidated molecules and their interactions involved in cell death by using largely in vitro induction of cell death or survival signals in a more defined manner, While these critical information and novel findings provide us with clearer understanding of mechanisms underlying cell death, it does by no means explain how PCD occurs and which cells or tissues are affected during normal embryonic development in vivo. In this study, we used zebrafish to examine whether the PCD is occurring selectively or randomly in developing embryos by whole mount in situ TUNEL analysis with specific markers for neural cells. The result revealed that the degree and distribution of TUNEL staining varied considerably throughout gastrulation stage, and there was also a number of TUNEL-negative embryos. Most of TUNEL-positive cells were scattered randomly throughout the blastoderm. During the gastrulation stage about 75 % of the embryos analyzed exhibited more than 5 TUNEL-positive cells. As the dorsal epiblast begins to thicken rather abruptly near the end of gastrulation, TUNEL-positive cells were mainly located along the dorsal side. Although there were some variations in TUNEL staining during segmentation and pharyngeal stages, TUNEL staining continued to be localized to the central nervous system, and was also detected in the sensory organs, trigeminal ganglions, and the primary sensory neurons. High levels of the cell death in developing brain between 20-somite and prim-6 stages are thought to play a role in the morphogenesis and organization of the brain. At prim-16 stage, cell death is considerably reduced in the brain region. Dying cells are mainly localized to the prospective brain region where ectodermal cells are about to initiate neurogenesis. As development progressed, high levels and more reproducible patterns of cell death were observed in the developing nervous system. Intensive TUNEL staining was restricted to the trigeminal ganglions, the primary sensory neurons, and sensory organs, such as olfactory pits and otic vesicles. Thus, PCD patterning in zebrafish embryos occurs randomly at early stages and becomes restricted to certain region of the embryos. The spatio-temporal pattern of PCD during the early embryonic development in zebrafish will provide basic information for further studies to elucidate genes involved in. regulation of PCD largely unknown in vivo during vertebrate embryogenesis.

  • PDF

Chemical Dissection of Zebrafish Egg Envelop, the Chorion

  • Hwang, C. N.;H. J. Kang;Kim, C.;D. S. Na;S. K. Chae;B. K. Joo;Lee, J. W.;Lee, S. H.
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2004년도 춘계학술발표대회
    • /
    • pp.283-283
    • /
    • 2004
  • The eggs of most animal species are surrounded by an extracellular matrix known as chorion, egg envelope, egg coat, or zona pellucida. Development of fish embryo usually takes several days in an aquatic environment. During embryonic development, the chorion must protect embryo from physical damage and microbial infection in the exposed aquatic environment. (omitted)

  • PDF

Effects of the Particulate Matter2.5 (PM2.5) on Lipoprotein Metabolism, Uptake and Degradation, and Embryo Toxicity

  • Kim, Jae-Yong;Lee, Eun-Young;Choi, Inho;Kim, Jihoe;Cho, Kyung-Hyun
    • Molecules and Cells
    • /
    • 제38권12호
    • /
    • pp.1096-1104
    • /
    • 2015
  • Particulate $matter_{2.5}$ ($PM_{2.5}$) is notorious for its strong toxic effects on the cardiovascular, skin, nervous, and reproduction systems. However, the molecular mechanism by which $PM_{2.5}$ aggravates disease progression is poorly understood, especially in a water-soluble state. In the current study, we investigated the putative physiological effects of aqueous $PM_{2.5}$ solution on lipoprotein metabolism. Collected $PM_{2.5}$ from Seoul, Korea was dissolved in water, and the water extract (final 3 and 30 ppm) was treated to human serum lipoproteins, macrophages, and dermal cells. $PM_{2.5}$ extract resulted in degradation and aggregation of high-density lipoprotein (HDL) as well as low-density lipoprotein (LDL); apoA-I in HDL aggregated and apo-B in LDL disappeared. $PM_{2.5}$ treatment (final 30 ppm) also induced cellular uptake of oxidized LDL (oxLDL) into macrophages, especially in the presence of fructose (final 50 mM). Uptake of oxLDL along with production of reactive oxygen species was accelerated by $PM_{2.5}$ solution in a dose-dependent manner. Further, $PM_{2.5}$ solution caused cellular senescence in human dermal fibroblast cells. Microinjection of $PM_{2.5}$ solution into zebrafish embryos induced severe mortality accompanied by impairment of skeletal development. In conclusion, water extract of $PM_{2.5}$ induced oxidative stress as a precursor to cardiovascular toxicity, skin cell senescence, and embryonic toxicity via aggregation and proteolytic degradation of serum lipoproteins.