• Title/Summary/Keyword: Zea mays L.

Search Result 270, Processing Time 0.029 seconds

Variations in endopolyploidy level during the short period of the early growing stage in the roots and leaves of maize (Zea mays) seedlings

  • Ogawa, Atsushi;Taguchi, Nanako;Miyoshi, Kazumitsu
    • Plant Biotechnology Reports
    • /
    • v.4 no.2
    • /
    • pp.117-123
    • /
    • 2010
  • We used a flow cytometer to investigate the variations in endopolyploidy (the frequencies of nuclei with DNA contents equivalent to 4C through 16C) during the short period of the early growing stage in vigorously growing young tissues of maize seedlings. We examined different portions of the root and leaves that had been growing for 7 (day 7) and 13 (day 13) days after germination. Endoreplication showed two opposing phenomena without aging. In one case, the endopolyploidy of the first leaf was higher on day 13 than on day 7. In the latter case, endopolyploidy decreased, as clearly revealed by a comparison of the endopolyploidy of the second leaves and the 160-170 mm portion of the seminal root on days 7 and 13. Endopolyploidy was also lower in the top of the leaf. In roots, endopolyploidy was increased by the exogenous application of abscisic acid for only 1 day. The levels of endopolyploidy increased without an increase in cell size in the roots. These results showed that endoreplication occurs in actively growing and young tissue and that the variation can be induced in the short period examined.

Total polyphenol and ferulic acid analysis of a new variety of corn, Bandiburichodang, according to steaming time and roasting temperature

  • Nari Yoon;Hak-Dong Lee;Uyoung Na;A Ram Yu;Min-Jung Bae;Gunhwa Park;Sanghyun Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.305-310
    • /
    • 2023
  • Bandiburichodang (BDC) is a new variety of Zea mays L. Total polyphenol content (TPC) assay and quantitative analysis of ferulic acid (FA) were performed to determine the steaming, roasting conditions of BDC kernels that lead to the highest content. TPC levels increased after roasting under all conditions. TPC levels in samples steamed at 115 ℃ for 25 min were 3.157 mg/g before roasted, and increased to 3.825 and 4.739 mg/g after roasting at 160 and 200 ℃, respectively. Whether BDC kernels were roasted was relevant with TPC content. BDC kernels were extracted to perform quantitative analysis of FA. Roasting temperature affected FA content: the higher the temperature, the lower the content. BDC kernels that were steamed at 115 ℃ for 25 min had 0.178 mg/g of FA content before roasting, and levels decreased to 0.132 and 0.115 mg/g after roasting. Under different roasting conditions, FA content decreased 15 to 50%. We hypothesize that this phenomenon is due to a breakdown of phenolic compounds or cell wall disruption.

Detection of Major Mycotoxins from Contaminated Cereals (Wheat, Soybean and Corn) (오염된 곡물류(밀, 콩, 옥수수)에서 주요 진균독소 검출)

  • Chung, Ill-Min;Kim, Eun-Young;Paik, Su-Bong;Yu, Seung-Hun
    • Analytical Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.534-539
    • /
    • 1999
  • The major mycotoxins were detected from wheat(Triticum aestivum L.), soybean(Glycine max Merr.) and com(Zea mays L.), infected postharvest phathogens, Penicillium, Aspergillus and Fusarium. Analyses of the major mycotoxins were conducted using HPLC analysis. Detected Penicillium mycotoxins of infected cereals were brefeldin A with amount ranged from 3.1 to 1240 ppm, citreoviridin with amount ranged from 40 to 80 ppm, griseofulvin with amount ranged from 3.6 to 26.0 ppm, citrinin with amount ranged from 0.3 to 4.0 ppm and patulin with amount ranged from 420 to 3800 ppm. Aspergillus toxins of infected postharvest wheat, soybean and corn were ochratoxin A with amount of 730 ppm, 12.4 ppm and 310 ppm, respectively.

  • PDF

Effects of NPK Fertilizers on Antioxidant Activity of Corn(Zea mays L.) (옥수수의 항산화 활성에 대한 3요소 비료의 효과)

  • Seo, Young-Ho;Heo, Nam-Kee;Jung, Yeong-Sang;Rhee, Hae-Ik;Min, Hwang-Kee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.2
    • /
    • pp.85-91
    • /
    • 2000
  • Antioxidant activity and related components including tocopherols, phenolic compounds and carotenoids in the corn(Zea mays L.) kernels were measured to understand effects of fertilizer application. Hybrids used were Chalok 2, a waxy corn, and Suwon 19, a dent corn. The standard fertilizer level of N-P-K was 14.5-3-6 for Chalok 2 and 17.4-3-6.9 for Suwon 19. The treatments of the fertilizer levels were the standard level, half and two fold amounts of N, P, and K, and no fertilizer. The antioxidant activity was determined by measuring electron donating ability. The antioxidant activity of Chalok 2 was higher than Suwon 19. The antioxidant activity was the highest at the standard fertilizer treatment for Chalok 2, but was statistically not significant. The antioxidant activity and the related compounds content in Suwon 19, however, were the highest in the two fold nitrogen treatment, and the differences were significant. The contents of tocopherols, phenolic compounds and carotenoids were 30.0~38.1, 104.7~118.8, $0.1{\mu}gml^{-1}$, respectively for Chalok 2 and 16.7~20.1, 59.9~72.7, $35.5{\sim}50.0{\mu}gml^{-1}$, respectively for Suwon 19. The antioxidant activity was positively correlated with the grain yield in both cultivars. The shorter the ASI the higher the yield of the plant. The difference in genetic factors would affect greater influence than fertilizer effect on the antioxidant activity of corn.

  • PDF

Influence of Hanwoo (Korean Native Cattle) Manure Compost Application in Soil on the Growth of Maize (Zea mays L.) (한우퇴비 시용에 따른 옥수수(Zea mays L.)의 생육에 미치는 영향)

  • Byeon, Ji-Eun;Lee, Jun Kyung;Park, Min-Soo;Jo, Na Yeon;Kim, Soo-Ryang;Hong, Sung-ha;Lee, Byong-O;Lee, Myung-Gyu;Hwang, Sun-Goo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.3
    • /
    • pp.164-171
    • /
    • 2022
  • We studied the influence of Hanwoo (Korean native cattle) manure compost soil application on the growth and yield of maize (Zea mays L.). We compared the soil application of chemical fertilizer (CF), commercial manure (CM), Hanwoo manure (HM), and the mixed Hanwoo manure and chemical fertilizer (HM + CF). CF application showed faster tasseling and silking dates compared to the other treatments. During the early plant growth stage of maize, CF application resulted in taller plant height, However, during later growth stages (55 days after transplanting). HM (226.0 cm) and HM + CF (230.0 cm) treatment resulted in taller plant height compared to CF (216.2 cm). Post-harvest measurement results showed that, the ear length was longer in HM (22.13 cm) and HM + CF (22.70 cm) compared to others, while ear diameter, ear weight, and 100-grains weight showed no significant difference among CF, HM, and HM + CF groups. The use of HM resulted in delayed growth during the early stages of plant development compared to CF. However, crop productivity markers of ear weight and ear diameter showed no significant difference compared to CF. Thus, HM treatment was comparable to CF treatment in maize cultivation.

Identification and molecular characterization of downy mildew resistant gene candidates in maize (Zea mays subsp. Mays)

  • Kim, Jae Yoon;Kim, Chang-Ho;Kim, Kyung Hee;Lee, Byung-Moo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.113-113
    • /
    • 2017
  • Downy mildew (DM), caused by several species in the Peronosclerospora and Scleropthora genera, is a major maize (Zea mays L.) disease in tropical or subtropical regions. DM is an obligate parasite species in the higher plants and spreads by oospores, wind, and mycelium in seed surface, soil, and living hosts. Owing to its geographical distribution and destructive yield reduction, DM is one of the most severe maize diseases among the maize pathogens. Positional cloning in combination with phenotyping is a general approach to identify disease resistant gene candidates in plants; however, it requires several time-consuming steps including population or fine mapping. Therefore, in the present study, we suggest a new combination strategy to improve the identification of disease resistant gene candidates. Downy mildew (DM) resistant maize was selected from five cultivars using the spreader row technique. Positional cloning and bioinformatics tools identified the DM resistant QTL marker (bnlg1702) and 47 protein coding genes annotations. Eventually, 5 DM resistant gene candidates, including bZIP34, Bak1, and Ppr, were identified by quantitative RT-PCR without fine mapping of the bnlg1702 locus. Specifically, we provided DM resistant gene candidates with our new strategy, including field selection by the spreader row technique without population preparation, the DM resistance region identification by positional cloning using bioinformatics tools, and expression level profiling by quantitative RT-PCR without fine mapping. As whole genome information is available for other crops, we propose applying our novel protocol to other crops or for other diseases with suitable adjustment.

  • PDF