• Title/Summary/Keyword: ZVS(zero voltage switched) Converter

Search Result 34, Processing Time 0.026 seconds

ZVS PWM Converter For Battery Charger (배터리 충전기용 영전압 PWM 컨버터)

  • 정규범
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.375-381
    • /
    • 1998
  • Zero Voltage Switched (ZVS) Pulse Width Modulation (P~마1) converter which operates a fixed frequency is proposed in this paper. The main switches of the converter are always switched at zero voltage, and the auxiliaη switches are s softly switched, The voltage and current stresses of the switches are minimized as low as in conventional PWM converters, The suggested buck typed converter is analyzed. designed for a battery charger. The designed characteristics are experimentally verified by the results of the buck type converter.

  • PDF

Zero Voltage Switched Converter with Reduced Conduction Loss of Auxiliary Switch (보조 스위치의 전도손실을 줄인 영전압 스위칭 방식의 컨버터)

  • Joung, Gyu-Bum
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.2
    • /
    • pp.131-137
    • /
    • 1999
  • New zero voltage switched(ZVS) converter in which main switch is switched at zero voltage is proposed. A resonant inductor of conventional ZVS PW converter is replaced to two small saturable inductors in order to reduce conduction loss of auxiliary switch. Therefore, the switching loss of main switch is very low, and conduction losses of the main and auxiliary switch are lowered. The ZVS and above characteristics are verified by experimental results for a 200 kHz operation.

  • PDF

A Design of Driving Circuit for Microwave oven using Phase-shifted FB-ZVS PWM Switching (Phase-shifted FB-ZVS PWM 스위칭을 이용한 Micorwave oven 구동회로 설계)

  • 이완윤;정교범;신판석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.265-272
    • /
    • 2001
  • The traditional 60[Hz] power supply for during magnetron in microwave oven has disadvantages of heavy weight and low efficiency due to 60[Hz] High Voltage Transformer(HVT), capacitor and th phase control of thyristors. To alleviate these disadvantages, this paper proposes a 20[kHz] phase-shifted Full-Bridge(FB) Zero-Voltage-Switched(ZVS) PWM converter for driving a 600[W] magnetron in an 1[kW] microwave oven. The proposed converter has advantages of light weight and high power density.

  • PDF

THE CLAMP MODE FORWARD ZERO-VOLTAGE-SWITCHING MULTI-RESONANT-CONVERTER (CLAMP MODE에서 동작하는 ZVS-MRC FORWARD 콘버어터에 관한 연구)

  • Kim, Hee-Jun;Simun, Misri
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.210-213
    • /
    • 1991
  • The clamp mode Zero-Volatge-Switched Multi-Resonant-Converter(ZVS-MRC) is proposed. In the converter, the performance of the conventional ZVS-MRC is improved by clamping the drain-to-source voltage of the power switch using a soft switching nondissipative active clamp network. The analysis for each stage of the converter operation modes is presented and is verified by experiments.

  • PDF

A New High Power Factor ZVT-ZCT AC-DC Boost Converter

  • Ting, Naim Suleyman
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1539-1548
    • /
    • 2018
  • This paper introduces a new soft switched AC-DC boost converter with power factor correction (PFC). In the introduced converter, all devices are turned on and off under soft switching (SS). The main switch is turned on under zero voltage transition (ZVT) and turned off under zero current transition (ZCT). The main diode is turned on under zero voltage switching (ZVS) and turned off under zero current switching (ZCS). Meanwhile, there is not any current or voltage stress on the main devices. Besides, the auxiliary switch is turned on under ZCS and turned off under ZVS. The detailed theoretical analysis of the converter is presented, and also theoretical analysis is verified by a prototype with 100 kHz and 500 W. Also, the proposed converter has 99.8% power factor and 97.5% total efficiency at soft switching operation.

Novel Two Stage AC-to-DC Converter with Single Switched Zero Voltage Transition Boost Pre-Regulator using DC-Linked Energy Feedback (새로운 영전압 스위칭 이단방식의 고역률 컨버터)

  • Roh, Chung-Wook;Moon, Gun-Woo;Jung, Young-Seok;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.385-387
    • /
    • 1996
  • A novel two stage soft-switching ac-to-dc convener with power factor correction is proposed. The proposed convener provides zero-voltage-switching (ZVS) condition to main switch of boost pre-regulator without auxiliary switch. Comparing to the conventional two stage approach(ZVS-PWM boost rectifier followed by off-line ZVS dc-dc step down converter), the proposed approach is simple and reducing EMI noise problem. A new simple DC-linked energy feedback circuit provides zero-voltage-switching condition to boost pre-regulator without imposing additional voltage and current stresses and loss of PWM capability. Operational principle, analysis, control of the proposed converter together with the simulation results of 1KW prototype are presented.

  • PDF

A High Power Factor and High Efficiency Three Phase Boost Converter using auxiliary Partial Resonant circuit (보조 부분 공진 회로를 이용한 고역률 고효율 삼상 부스트 컨버터)

  • Suh, Ki-Young;Kwon, Soon-Kurl;Lee, Hyun-Woo;Kim, Young-Mun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.4
    • /
    • pp.212-218
    • /
    • 1999
  • A new partial resonant three phase boost converter with high power factor and high efficiency is proposed. The proposed boost converter is constructed by using a resonant network in parallel with the swithch of the conventional boost converter. The devices are switched at zero voltage or zero current eliminating the switching loss. A new auxiliary partial resonant boost converter achieves zero-voltage switching(ZVS) or zero-current switching(ZCS) for all switch devices without increasing their voltage and current stresses.

  • PDF

Elimination of harmonics in three-Phase PWM inverter using auxiliary partial resonant circuit (보조부분 공진 회로를 이용한 삼상 PWM 인버터의 고조파 제거)

  • Suh, Ki-Young;Lee, Hyun-Woo;Kim, Young-Mun;Mun, Sang-Pil
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.137-140
    • /
    • 1998
  • A new SPWM inverter using three-phase boost converter by auxiliary partial resonant with high power factor and high efficiency is proposed. The proposed boost converter is constructed by using a resonant network in parallel with the switch of the conventional boost converter. The devices are switched at zero voltage or zero current eliminating the switching loss. A new Partial resonant boost converter achieves zero-voltage switching (ZVS) or zero-current switching (ZCS) for all switch devices without increasing their voltage and current stresses. This paper introduces elimination of low-order harmonics compared with conventional SPWM inverter and SPWM inverter using three-phase boost converter by auxiliary Partial resonant.

  • PDF

Analysis, Design, and Implementation of a Soft-Switched Active-Clamped Forward Converter with a Current-Doubler Rectifier

  • Jang, Paul;Kim, Hye-Jin;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.894-904
    • /
    • 2016
  • This study examines the zero-voltage switching (ZVS) operation of an active-clamped forward converter (ACFC) with a current-doubler rectifier (CDR). The ZVS condition can be obtained with a much smaller leakage inductance compared to that of a conventional ACFC. Due to the significantly reduced leakage inductance, the design is optimized and the circulating loss is reduced. The operation of the ACFC with a CDR is analyzed, and a detailed ZVS analysis is conducted on the basis of a steady-state analysis. From the results, a design consideration for ZVS improvement is presented. Loss analyses of the converters shows that enhanced soft-switching contributes to an efficiency improvement under light-load condition. Experimental results from a 100-W (5-V/20-A) prototype verify that the ACFC with a CDR can attain ZVS across an extended load range of loads and achieve a higher efficiency than conventional ACFCs.

A New Zero-Voltage-Switching PWM Converters with Zero-Current-Switched Auxiliary Switch (영전류 스위칭 방식의 보조스위치를 갖는 새로운 영전압 스위칭 방식의 PWM 컨버터)

  • 마근수;홍일희;김양모
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.12
    • /
    • pp.632-640
    • /
    • 2003
  • In conventional Zero-Voltage-Transition(ZVT) PWM converters, zero-voltage turn-on and turn-off for main switch without increasing voltage/current stresses is achieved at a fixed frequency. The switching loss, stress, and noise, however, can't be minimized because they adopt auxiliary switches turned off under hard-switching condition. In this paper, new ZVS-PWM converters of which both active and passive switches are always operating with soft-switching condition are proposed. Therefore, the proposed ZVS-PWM converters are most suitable for avionics applications requiring high-power density. Breadboarded ZVS-PWM boost converters using power MOSFET are constructed to verify theoretical analysis.