• 제목/요약/키워드: ZF precoding

검색결과 14건 처리시간 0.015초

제한된 피드백 정보를 이용하는 이중 공간 다중화 시스템의 Preceding 기법 (Preceding Scheme for Dual Spatial Multiplexing Systems with Limited Feedback)

  • 이명원;문철;육종관
    • 한국전자파학회논문지
    • /
    • 제17권12호
    • /
    • pp.1224-1230
    • /
    • 2006
  • 본 논문에서는 제한된 피드백 정보를 사용하는 공간 다중화 시스템을 위한 preceding 기법을 제안하였다. 제안하는 precoding 기법은 unitary 행렬로 구성된 precoder 코드북내에서 preceding 행렬의 선택 정보를 송신단에 전달하는 장구간 피드백과 선택된 unitary 행렬의 열 벡터 중 전송체 사용될 열 벡터 정보를 송신단에 전달하는 단구간 피드백을 이용한다. 또한, zero-forcing 수신기를 사용하는 $2{\times}2$ MIMO 시스템에 대해 평균 throughput을 최대화하는 precoder 코드북을 디자인하였다. 모의 실험 결과에 따르면 제안된 기법은 몇 비트의 장구간 피드백 정보를 추가함으로써 평균 SNR이 20 dB인 환경에서 멀티모드 안테나 선택 기술이나 멀티모드 기저 선택 기술에 비해 throughput 성능이 각각 11.2 %, 5.1 % 증가한다.

Simplified approach for symbol error rate analysis of SC-FDMA scheme over Rayleigh fading channel

  • Trivedi, Vinay Kumar;Sinha, Madhusudan Kumar;Kumar, Preetam
    • ETRI Journal
    • /
    • 제40권4호
    • /
    • pp.537-545
    • /
    • 2018
  • In this paper, we present a comprehensive analytical study of the symbol error rate (SER) of single-carrier frequency-division multiple access (SC-FDMA) with zero-forcing frequency domain equalization (ZF-FDE) over a Rayleigh fading channel. SC-FDMA is considered as a potential waveform candidate for fifth-generation (5G) radio access networks (RANs). First, the $N_C$ fold convolution of the noise distribution of an orthogonal frequency-division multiplexing (OFDM) system is computed for each value of the signal-to-noise ratio (SNR) in order to determine the noise distribution of the SC-FDMA system. $N_C$ is the number of subcarriers assigned to a user or the size of the discrete Fourier transform (DFT) precoding. Here, we present a simple alternative method of calculating the SER by simplifying the $N_C$ fold convolution using time and amplitude scaling properties. The effects of the $N_C$ fold convolution and SNR over the computation of the SER of the SC-FDMA system has been separated out. As a result, the proposed approach only requires the computation of the $N_C$ fold convolution once, and it is used for different values of SNR to calculate the SER of SC-FDMA systems.

Performance of ZF Precoder in Downlink Massive MIMO with Non-Uniform User Distribution

  • Kong, Chuili;Zhong, Caijun;Zhang, Zhaoyang
    • Journal of Communications and Networks
    • /
    • 제18권5호
    • /
    • pp.688-698
    • /
    • 2016
  • In this paper, we investigate the achievable sum rate and energy efficiency of downlink massive multiple-input multiple-output antenna systems with zero-forcing precoding, by taking into account the randomness of user locations. Specifically, we propose two types of non-uniform user distributions, namely, center-intensive user distribution and edge-intensive user distribution. Based on these user distributions, we derive novel tight lower and upper bounds on the average sum rate. In addition, the impact of user distributions on the optimal number of users maximizing the sum rate is characterized. Moreover, by adopting a realistic power consumption model which accounts for the transmit power, circuit power and signal processing power, the energy efficiency of the system is studied. In particular, closed-form solutions for the key system parameters, such as the number of antennas and the optimal transmit signal-to-noise ratio maximizing the energy efficiency, are obtained. The findings of the paper suggest that user distribution has a significant impact on the system performance: for instance, the highest average sum rate is achieved with the center-intensive user distribution, while the lowest average sum rate is obtained with the edge-intensive user distribution. Also, more users can be served with the center-intensive user distribution.

Joint Lattice-Reduction-Aided Precoder Design for Multiuser MIMO Relay System

  • Jiang, Hua;Cheng, Hao;Shen, Lizhen;Liu, Guoqing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권7호
    • /
    • pp.3010-3025
    • /
    • 2016
  • Lattice reduction (LR) has been used widely in conventional multiple-input multiple-output (MIMO) systems to enhance the performance. However, LR is hard to be applied to the relay systems which are important but more complicated in the wireless communication theory. This paper introduces a new viewpoint for utilizing LR in multiuser MIMO relay systems. The vector precoding (VP) is designed along with zero force (ZF) criterion and minimum mean square error (MMSE) criterion and enhanced by LR algorithm. This implementable precoder design combines nonlinear processing at the base station (BS) and linear processing at the relay. This precoder is capable of avoiding multiuser interference (MUI) at the mobile stations (MSs) and achieving excellent performance. Moreover, it is shown that the amount of feedback information is much less than that of the singular value decomposition (SVD) design. Simulation results show that the proposed scheme using the complex version of the Lenstra--Lenstra--Lovász (LLL) algorithm significantly improves system performance.