• Title/Summary/Keyword: ZEM Based Guidance

Search Result 2, Processing Time 0.016 seconds

Characteristic of ZEM Based Guidance Law with Time-to-go Estimation Methods (잔여시간 추정에 따른 ZEM 기반 유도법칙의 특징)

  • Kim, Tae-Hun;Park, Bong-Gyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.6
    • /
    • pp.429-437
    • /
    • 2019
  • This paper deals with a ZEM (Zero-Effort-Miss) based guidance law for the interception of moving targets and characteristics of the guidance law according to time-to-go estimation methods. To derive the ZEM vector feedback guidance command, we introduce a polynomial function with unknown coefficient, and then we determine the coefficient to satisfy initial and terminal constraints. Since the directions of the guidance command and ZEM vectors are adjusted by the time-to-go, general time-to-go estimation methods are proposed, which can generate the vertical and horizontal guidance commands with respect to an arbitrary reference frame. By performing various numerical simulations, the performance and characteristics of the proposed methods are investigated.

Spacecraft Guidance Algorithms for Asteroid Intercept and Rendezvous Missions

  • Hawkins, Matt;Guo, Yanning;Wie, Bong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.154-169
    • /
    • 2012
  • This paper presents a comprehensive review of spacecraft guidance algorithms for asteroid intercept and rendezvous missions. Classical proportional navigation (PN) guidance is reviewed first, followed by pulsed PN guidance, augmented PN guidance, predictive feedback guidance, Lambert guidance, and other guidance laws based on orbit perturbation theory. Optimal feedback guidance laws satisfying various terminal constraints are also discussed. Finally, the zero-effort-velocity (ZEV) error, analogous to the well-known zero-effort-miss (ZEM) distance, is introduced, leading to a generalized ZEM/ZEV guidance law. These various feedback guidance laws can be easily applied to real asteroid intercept and rendezvous missions. However, differing mission requirements and spacecraft capabilities will require continued research on terminal-phase guidance laws.