• Title/Summary/Keyword: ZCT-PWM

Search Result 14, Processing Time 0.015 seconds

An Interleaved PWM Buck Converter with a Soft Switching Auxiliary Circuit (소프트 스위칭 형태의 보조 회로를 이용한 인터리브드 벅 컨버터)

  • Lee, Eui-Cheon;Choi, Hyun-Chil
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.547-555
    • /
    • 2013
  • This paper proposes the interleaved buck converter using a soft switching auxiliary circuit. In this scheme, an auxiliary circuit is added to the conventional interleaved buck converter and used to achieve soft-switching conditions for both the main switch and freewheeling diode. In addition, the switch in the auxiliary circuit operates under soft-switching conditions. Also, according to the input to output conditions, the main switch achieved zero-current-transition(ZCT) or zero-current & zero-voltage-transition(ZCZVT) at turn on. Thus, the proposed interleaved buck converter provides a higher efficiency. The basic operations, in this paper, are discussed and design guidelines are presented. The usefulness of the proposed converter is verified on a 200kHz, 180W prototype converter.

Power Factor Correction Circuit with a Soft-switched Boost Scheme (스위칭 손실을 최소화한 부스트 방식의 역률 개선 회로)

  • Lee, Hyo-Jae;Choi, Hyun-Chil
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.122-129
    • /
    • 2011
  • In this paper, a new power factor correction circuit(PFC) based on a soft-switched boost scheme is proposed. Except for some soft-switching transition intervals, it operates exactly like the conventional boost scheme. Thus the desirable features of both high efficiency and easy control can be obtained. The design guidelines are suggested to achieve high efficiency. To verify the superior performance of the proposed circuit, experiment and simulation is carried out.

A Novel Soft Switching PWM·PFC AC·DC Boost Converter

  • Sahin, Yakup
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.256-262
    • /
    • 2018
  • This study introduces a novel Soft Switching (SS) Pulse Width Modulated (PWM) AC-DC boost converter. In the proposed converter, the main switch is turned on with Zero Voltage Transition (ZVT) and turned off with Zero Current Transition (ZCT). The main diode is turned on with Zero Voltage Switching (ZVS) and turned off with Zero Current Switching (ZCS). The auxiliary switch is turned on and off with ZCS. All auxiliary semiconductor devices are turned on and off with SS. There is no extra current or voltage stress on the main semiconductor devices. The majority of switching energies are transferred to the output by auxiliary transformer. Thus, the current stress of auxiliary switch is significantly reduced. Besides, the proposed converter has simple structure and ease of control due to common ground. The theoretical analysis of the proposed converter is verified by a prototype with 100 kHz switching frequency and 500 W output power. Furthermore, the efficiency of the proposed converter is 98.9% at nominal output power.

A ZV-ZCT Boost Converter using an Auxiliary Resonant Circuit (보조 공진회로를 갖는 영전압-영전류 천이 부스트 컨버터)

  • Jung, Doo-Yong;Kim, Jun-Gu;Ryu, Dong-Kyun;Song, In-Beom;Jung, Yong-Chae;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.298-305
    • /
    • 2012
  • This paper proposes a soft switching boost converter with an auxiliary resonant circuit. The auxiliary resonant circuit is added to a general boost converter and that is composed of one switch, one diode, one inductor and two capacitors. The resonant network helps the main switch to operate with a zero voltage switching(ZVS) and auxiliary switch also operates under the zero voltage and zero current conditions. The soft switching range is extended by the auxiliary switch and it is possible to control the proposed converter with a pulse width modulation(PWM). The ZVS and ZCS techniques make switching losses decreased and efficiency of the system improved. A theoretical analysis is verified through the simulation and experiment.