• Title/Summary/Keyword: Z-source network

Search Result 47, Processing Time 0.026 seconds

입력 직류 전압과 Z-네트워크 커패시터 전압 검출에 의한 Z-소스 인버터의 출력 전압 제어 (Output Voltage Control of Z-Source Inverter by the Detection of the Input DC Voltage and Z-Network Capacitor Voltage)

  • 김세진;정영국;임영철;최준호
    • 전기학회논문지
    • /
    • 제60권8호
    • /
    • pp.1515-1522
    • /
    • 2011
  • This paper proposes the algorithm for the output AC voltage control of Z-source inverter by the detection of the input DC voltage and Z-network capacitor voltage. The actual modulation index of the proposed method is detected by the capacitor voltage in Z-network and input DC voltage of three-phase Z-source inverter. Control modulation index for the output voltage control is calculated by the detected actual modulation index and reference modulation index. And, calculated control modulation index is applied to the modified space vector modulation (SVM) for control the output voltage of Z-source inverter. To verify the validity of the proposed method, PSIM simulation was achieved and a DSP controlled 1[kW] three-phase Z-source inverter was producted. The simulation and experiment were performed under the condition that the load was changed in case of the constant input DC voltage and the input DC voltage was changed in case of the load was constant. As a result, we could know that the output phase voltage of Z-source inverter followed to the reference voltage 70[VRMS] despite the load or the input DC voltage were suddenly changed.

평균 모델을 이용한 Z-소스 인버터의 제어 (Control of the Z-Source Inverter using Average Model)

  • 이광운
    • 전력전자학회논문지
    • /
    • 제19권3호
    • /
    • pp.290-296
    • /
    • 2014
  • This paper presents a design strategy for the control of the Z-source inverter (ZSI). For the Z-network capacitor voltage control, the average current model is derived to describe the dynamics of the voltage control and the controller outputs the average current command for the capacitor. Z-network inductor current reference is derived from the average current model of the Z-network capacitor. The inner current control loop outputs the average voltage command for the Z-network inductor and the shoot-through duty ratio of the ZSI is calculated from the output using the average voltage model of the Z-network inductor. The gain values of the current and voltage controllers are directly obtained by the Z-network parameters and desired bandwidth of each controller without a gain tuning process.

Neutral-point Potential Balancing Method for Switched-Inductor Z-Source Three-level Inverter

  • Wang, Xiaogang;Zhang, Jie
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1203-1210
    • /
    • 2017
  • Switched-inductor (SL) Z-source three-level inverter is a novel high power topology. The SL based impedance network can boost the input dc voltage to a higher value than the single LC impedance network. However, as all the neutral-point-clamped (NPC) inverters, the SL Z-source three-level inverter has to balance the neutral-point (NP) potential too. The principle of the inverter is introduced and then the effects of NP potential unbalance are analyzed. A NP balancing method is proposed. Other than the methods for conventional NPC inverter without Z-source impedance network, the upper and lower shoot-through durations are corrected by the feedforward compensation factors. With the proposed method, the NP potential is balanced and the voltage boosting ability of the Z-source network is not affected obviously. Simulations are conducted to verify the proposed method.

스위치 저감형 Z-Source Inverter PWM 제어 (PWM Control of Reduced Switch Z-Source Inverter)

  • 김성환;박태식
    • 전기전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.53-57
    • /
    • 2019
  • 본 논문에서는 스위칭 소자를 줄이기 위한 새로운 Z-소스 인버터의 구조와 PWM 펄스 제어 방법에 대하여 제안하였다. 개선된 Z-소스 인버터는 Z-네트워크가 DC전압과 인버터 사이가 아닌 인버터 뒷단과 접지 사이에 연결되며, 이러한 개선된 Z-소스 인버터는 커패시터 돌입 전류 제한 기능과 커패시터 전압 스트레스가 작은 장점을 가지고 있다. 개선된 Z-소스 인버터에서 스위치를 6개에서 4개로 줄이는 새로운 형태의 스위치 저감형 Z-소스 인버터의 Topology를 제안하고, 제안된 Topology에 적합한 PWM 제어 방법을 개발하였다. 제안된 방법은 PSIM 시뮬레이션을 통해 특성과 성능을 확인하였다.

다이오드-커패시터 출력필터를 갖는 Quasi Z-소스 컨버터의 입력 전류와 출력전압 특성 (Characteristics of Output Voltage and Input Current of Quasi Z-Source Converter with a Diode-Capacitor Output Filter)

  • 임영철;김세진;정영국
    • 조명전기설비학회논문지
    • /
    • 제26권6호
    • /
    • pp.16-28
    • /
    • 2012
  • This paper proposes a quasi Z-source converter(QZSC) with a diode-capacitor output filter to improve the output DC voltage boost ability. The proposed converter has the same quasi Z-source network topology compared with the conventional converter. But the proposed method is adopted a diode-capacitor filter as its output filter, since the conventional method is used an inductor-capacitor as its output filter. Under the condition of the same input-output DC voltage, the proposed method has more lower shoot-through duty ratio than the conventional method. Also, because the proposed converter has same voltage boost factor under lower shoot-through duty ratio compared with the conventional converter, the proposed converter can be operated with the lower capacitor voltage of Z-source network and the lower input current. To confirm the validity of the proposed method, PSIM simulation and a DSP based experiment were performed to acquire the output DC voltage 120[V] under the input DC voltage 80[V]. And the capacitor voltage and inductor current in Z-source network, the output voltage of each converter were compared and discussed.

A New Z-Source Inverter Topology with High Voltage Boost Ability

  • Trinh, Quoc-Nam;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권5호
    • /
    • pp.714-723
    • /
    • 2012
  • A new Z-source inverter (ZSI) topology is developed to improve voltage boost ability. The proposed topology is modified from the switched inductor topology by adding some more inductors and diodes into inductor branch to the conventional Z-source network. The modulation methods developed for the conventional ZSI can be easily utilized in the proposed ZSI. The proposed ZSI has an ability to obtain a higher voltage boost ratio compared with the conventional ZSI under the same shoot-through duty ratio. Since a smaller shoot-through duty ratio is required for high voltage boost, the proposed ZSI is able to reduce the voltage stress on Z-source capacitor and inverter-bridge. Theoretical analysis and operating principle of the proposed topology are explicitly described. In addition, the design guideline of the proposed Z-source network as well as the PWM control method to achieve the desired voltage boost factor is also analyzed in detail. The improved performances are validated by both simulation and experiment.

Coupled Inductor-Based Parallel Operation of a qZ-Source Full-Bridge DC-DC Converter

  • Lee, Hyeongmin;Kim, Heung-Geun;Cha, Honnyong;Chun, Tae-Won;Nho, Eui-Cheol
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.1-9
    • /
    • 2015
  • This study presents a novel transformer isolated parallel connected quasi Z-source (qZ-source) full-bridge DC-DC converter that uses a coupled inductor in both the qZ-source network and output filter inductor. Unlike traditional voltage-fed or current-fed converters, the proposed converter can be open- and short-circuited without damaging switching devices. Therefore, the desired buck and boost functions can be achieved and converter reliability can be significantly improved. All the bulky inductors in the qZ-source network and output filter can also be minimized with the proposed inductor structures. A 4 kW prototype DC-DC converter is built and tested to verify the performance of the proposed converter.

전압 스트레스와 맥동이 개선된 양극성 출력 전압을 갖는 LCCT Z-소스 DC-DC 컨버터 (LCCT Z-Source DC-DC Converter with the Bipolar Output Voltages for Improving the Voltage Stress and Ripple)

  • 박종기;신연수;정영국;임영철
    • 전력전자학회논문지
    • /
    • 제18권1호
    • /
    • pp.91-102
    • /
    • 2013
  • This paper proposes the improved LCCT(Inductor-Capacitor-Capacitor-Trans) Z-source DC-DC converter (Improved LCCT ZSDC) which can generate the bipolar output voltages according to duty ratio D. The proposed converter has the characteristic and structure of Quasi Z-source DC-DC converter(Quasi ZSDC) and conventional LCCT Z-source DC-DC converter(LCCT ZSDC). To confirm the validity of the proposed method, PSIM simulation and a DSP based experiment were performed for each converter. In case which the input DC voltage is 70V, the bipolar output DC voltage of positive 90V and negative 50V could generate. Also, as comparison result of the capacitor voltage ripple in Z-network and the input current under the same condition for each converter, the voltage stress and the capacitor voltage in Z-network of the proposed method were lower compared with the conventional methods. Finally, the efficiency for each method was investigated according to load variation and duty ratio D.

3상 4 스위치 Z-소스 PWM정류기의 출력전압과 역률에 관한 연구 (A Study On the Output Voltage and Power Factor of the Three-Phase Four Switches Z-Source PWM Rectifier)

  • 수효동;엄준현;정영국;임영철
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 추계학술대회 논문집
    • /
    • pp.48-49
    • /
    • 2013
  • In this paper, the four switches three-phase Z-source rectifier is studied. The conventional three-phase four switches rectifier can only either perform buck or boost operation, distortion and unbalance of the input current are serious. Therefore, we proposed the four switches three-phase Z-source rectifier which can realize buck function simply by applying the Z-impedance network. We will verify characteristics of Z-network by the simulation and experiment.

  • PDF

스위치드 변압기 Z-소스 인버터의 출력전압 특성에 관한 연구 (A Study on the Output Voltage Characteristic of Switched Trans Z-Source Inverter)

  • 김세진;정영국;임영철
    • 전력전자학회논문지
    • /
    • 제18권2호
    • /
    • pp.123-130
    • /
    • 2013
  • This paper proposes the switched trans Z-source inverter(STZSI) which combined the characteristics of the trans Z-source inverter(TZSI) and the switched inductor Z-source inverter(SLZSI). The proposed STZSI has the same performance compared with the SLZSI which is improved the voltage boost performance of the conventional typical X-shaped ZSI, and it has advantage that circuit structure of Z-impedance network is more simple. And, in order to step up the voltage boost factor under the condition of the same duty ratio, unlike the SLZSI adding the inductors and diodes, the proposed method is dune by changing the turn ratio of trans primary winding of Z-impedance network. To confirm the validity of the proposed method, PSIM simulation and a DSP(TMS320F28335) based experiment were performed using trans with turn ratio 1 and 2 under the condition of the input DC voltage VI=50V, duty ratio D=0.1 and D=0.15. As a result, under the same input/ouput condition, the inverter arm voltage stress of the proposed method is reduced to about 15%-22% as compared with typical X-shaped ZSI, and the elements in Z-impedance network of the proposed method is reduced as compared with the SLZSI.