• Title/Summary/Keyword: Z-axis

Search Result 652, Processing Time 0.024 seconds

Analysis of Electromagnetic Phenomena and Vibration of BLDC Motor by Permanent Magnet Overhang (영구자석 오버행에 의한 BLDC Motor의 전자기적 현상 및 진동특성 해석)

  • Kang, Gyu-Hong;Kim, Duck-Hyun;Kim, Gyu-Tak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.11
    • /
    • pp.564-571
    • /
    • 2006
  • In this paper, the estimation of Z-axis thrust ripple and vibration of BLDC motor with asymmetrical permanent magnet overhang is performed by 3-D Finite Element Method (3-D FEM) and vibration experimentation. The ripple of Z-axis thrust is due to armature reaction field in BLDC motor driven to squire wave. That is generating to Z-axis vibration. The analysis results of Z-axis thrust and the vibration by Z-axis thrust ripple is validated by comparison with experimental result.

Z-map Model Using Triangular Grids (삼각 격자를 이용한 Z-map 모델)

  • Park, Pae-Yong;Ahn, Jeong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.824-828
    • /
    • 2000
  • Prior to the downloading of the NC codes to a machining center, the NC tool-path can be verified in a computer. The Z-map is one of the tools for the verification of NC tool-path. The Z-map is a two dimensional array in which the height values of the Z-axis direction vectors are stored. The Z-axis direction vectors are arranged in a rectangular grid pattern on the XY plane. The accuracy of the simulation comes from the grid interval. In the rectangular Z-map, the distances between the grid points are different. The distance in diagonal direction is larger than those in X or Y axis directions. For the rendering of the Z-map, a rectangular grid is divided into two triangular facets. Depending on the selection of a diagonal, there are two different cases. In this paper, triangular Z-map, in which the Z-axis direction vectors are arranged in a triangular grid pattern on XY plane, is proposed. In the triangular Z-map, the distances between grid points are equal. There is no ambiguity to make triangular facets for the rendering.

  • PDF

MTF Evaluation according to change in posture and channel during CT examination for wrist Joint : X-axis and Z-axis changes around Isocenter (손목관절 CT 검사 시 자세 변화와 채널 변경에 따른 MTF 평가 : Isocenter를 중심으로 X-축, Z-축 변화)

  • Seo, Min Jae;Lim, Jong Chon;Jung, Dabin;Han, Dong Kyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.811-817
    • /
    • 2020
  • This study aims to evaluate the Modulation Transfer Function (MTF) according to the change in the number of channels of the CT examination device by changing the posture of the patient to the X-axis and Y-axis in the wrist joint CT examination. Using a CT device and a wrist phantom, the test was performed by moving 0 (matched), 5, 10, and 15 cm in the X-axis around the isocenter, and the Z-axis was rotated by -20° and -40°. For the test, 16, -40 and 64 channels were used to check whether there was a difference for each number of channels. The examined images were compared by measuring the MTF values of the ulna and left and right sides of the radius. In the experiment where the isocenter was moved along the X-axis, the MTF value decreased with an increase in the moving distance, and the MTF value was found to be unaffected by the number of channels. In the experiment in which the wrist joint was rotated by -20° and -40° on the Z-axis, the degree of deviation and MTF were found to be irrelevant. It was not related to the number of channels either. In conclusion, the movement of the wrist along the X-axis should be restrained as much as possible for a wrist joint CT scan, whereas deviation around the Z-axis depending on the environment for the patient would not affect the MTF of the image.

Tool Path Analysis and Motion Control of 3D Engraving Machine

  • Smerpitak, Krit;Pongswatd, Sawai;Ukakimapurn, Prapart
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1245-1248
    • /
    • 2004
  • This paper presents a new technique to analyze data on the coordinate x, y, z and apply these data to design the motion control to improve the efficiency of the engraving machine so that it can engrave accordingly in 3 dimensions. First, the tool path on the x-y plane is analyzed to be synchronized with the z-axis. The digital data is then sent to the motion control to guide the movement of the engrave point on the x-y plane. Tool path moves along the x-axis with zero degree and different values of the y-axis according to the coordinate of the digital data and the analysis along z-axis to determine the depth for engraving. The depth can be specified from the gray level with the 256 levels of resolution. The data obtained includes the distances on x-axis, y-axis, and z-axis, the acceleration of the engrave point's movement, and the speed of the engrave point's movement. These data is then transfered to the motion control to guide the movement of the engrave point along the z-axis associated with the x-y plane. The results indicate that engraving using this technique is fast and continuous. The specimen obtained looks perfect in 3D view.

  • PDF

Initial Pole Position Estimation Algorithm of a Z-Axis PMLSM (Z축 선형 영구자석 동기전동기의 초기각 추정 알고리즘)

  • Lee, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.328-330
    • /
    • 2007
  • This paper deals with the estimation method on the initial pole position of a z-axis permanent magnet linear synchronous motor(PMLSM) without magnetic pole sensors such as Hall sensors. The proposed method takes account of the z-axis conditions such as the gravitational force and also the load conditions. The algorithm consists of two steps. The first step is to estimate the initial q-axis approximately by monitoring the movements at predefined different test q-axes. The second step is to estimate the real q-axis as accurately as possible based on the results at three different test q-axes. Experimental results on the z-axis PMLSM show good estimation characteristics of the proposed method.

  • PDF

Combined Gain Analysis of Satellite S-band Omni-antenna (위성 S-대역 옴니 안테나 합성 이득 해석)

  • Kim, Joong-Pyo;Lee, Sang-Kon
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.97-101
    • /
    • 2012
  • The TC&R(Telemetry, Command & Ranging) antennas should have the hemispherical omni antenna patterns to make sure that the communication link between the satellite and the ground station can be established under whatever satellite attitude during after launch to on-orbit mission. The hemispherical omni-antennas are typically placed on the +z axis and -z axis of the satellite to provide the spherical omni patterns. The S-band qaudrifilar helix antennas having RHCP and LHCP hemispherical omni pattern are designed to meet the antenna gain and the axial ratio requirements. To investigate the omni-antenna pattern characteristics depending on four cases of antenna polarization combination placed on the +z axis and -z axis, the antenna pattern of each case is analyzed. Based on the result, after installing the designed RHCP and LHCP S-band omni-antennas on the +z axis and -z axis of the satellite, the combined antenna gain is obtained and finally analyzed in conjunction with the communication link influence.

Action of Synchronous error between Z axis and spindle axis on rigid tapping (Rigid 탭핑에서의 Z축과 주축간 동기오차의 거동)

  • 이돈진;강지웅;김용규;김선호;김화영;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.184-187
    • /
    • 2000
  • This paper describes action of synchronous error between z axis and spindle axis on rigid tapping. Because rigid tapping cuts the threads synchronizing the movement of z axis to spindle rotation, synchronous error between z axis and spindle is very important. Increase of synchronous error degrades the accuracy of thread and crushes the tap in worst case. So we developed the realtime measurement system of synchronous error in order to know the action of synchronous error on rigid tapping. In result, we have known that synchronous error was increased according to rise of spindle speed and z axis speed. And because the cutting torque(M3-30Ncm∼M10-300Ncm) on rigid tapping are less than maximum motor torque(3500Ncm), it specially doesn't affect the synchronous error. The most important parameter which has affected the increase of synchronous error was acceleration/deceleration time. On worst case, spindle motor was tripped because of the excess of synchronous error. Because the acceleration/deceleration time ocuupies the most of the total cutting time, in order to move on the high speed rigid tapping, the acceleration/deceleration time of spindle must be remarkably reduced.

  • PDF

Development of a 6-axis robot′s finger force/moment sensor for stable grasping of an unknown object

  • Kim, Gab-Soon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.54-61
    • /
    • 2004
  • This paper describes the development of a 6-axis robot's finger force/moment sensor, which measures forces $F_x$(x-direction force), $F_y$and $F_z$, and moments $M_x$ (x-direction moment), $M_y$ and $M_z$ simultaneously, for stable grasping of an unknown object. In order to safely grasp an unknown object using the robot's gripper, the force in the gripping direction and the force in the gravity direction should be measured, and the force control should be performed using the measured forces. Also, the moments $M_x$, $M_y$ and $M_z$ to accurately perceive the position of the object in the grippers should be detected. Thus, the robot's gripper should be composed of 6-axis robot's finger force/moment sensor that can measure forces $F_x$, $F_y$ and $F_z$, and moments $M_x$ $M_y$ and $M_z$ simultaneously. In this paper, the 6-axis robot's finger force/moment sensor for measuring forces $F_x$, $F_y$ and $F_z$, and moments $M_x$ $M_y$ and $M_z$ simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of the fabricated sensor was performed, and the result shows that interference errors of the developed sensor are less than 3%. Also, Robot's gripper with the 6-axis robot's finger force/moment sensor for the characteristic test of force control was manufactured, and the characteristic test for grasping an unknown object using the sensors was performed using it. The fabricated gripper could grasp an unknown object stably. Thus, the developed 6-axis robot's finger force/moment sensor can be used for robot's gripper.

Development of Vertical Biomechanical Model for Evaluating Ride Quality (승차감 평가를 위한 수직 방향의 인체 진동 모델 개발)

  • 조영건;박세진;윤용산
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.269-279
    • /
    • 2000
  • This paper deals with the development of biomechanical model on a seat with backrest support in the vertical direction. Four kinds of biomechanical models are discussed to depict human motion. One DOF model mainly describes z-axis motion of hip, two and three DOF models describe z-axis of hip and head, and while nine DOF model suggested in this study represents more motion than the otehr model. Three kinds of experiments were executed to validate these models. The first one was to measure the acceleration of the floor and hip surface in z-axis, the back surface in x-axis, and the head in z-axis under exciter. From this measurement, the transmissiblities of each subject were obtained. The second one was the measurement of the joint position by the device having pointer and the measurement of contact position between the human body and the seat by body pressure distribution. The third one was the measurement of the seat and back cushion by dummy. The biomechanical model parameters were obtained by matching the simulated to the experimental transmissiblities at the hip, back, and head.

  • PDF

Research of z-axis geometric dose efficiency in multi-detector computed tomography (MDCT 장치의 z-축 기하학적 선량효율에 관한 연구)

  • Kim, You-Hyun;Kim, Moon-Chan
    • Journal of radiological science and technology
    • /
    • v.29 no.3
    • /
    • pp.167-175
    • /
    • 2006
  • With the recent prevalence of helical CT and multi-slice CT, which deliver higher radiation dose than conventional CT due to overbeaming effect in X-ray exposure and interpolation technique in image reconstruction. Although multi-detector and helical CT scanner provide a variety of opportunities for patient dose reduction, the potential risk for high radiation levels in CT examination can't be overemphasized in spite of acquiring more diagnostic information. So much more concerns is necessary about dose characteristics of CT scanner, especially dose efficient design as well as dose modulation software, because dose efficiency built into the scanner's design is probably the most important aspect of successful low dose clinical performance. This study was conducted to evaluate z-axis geometric dose efficiency in single detector CT and each level multi-detector CT, as well as to compare z-axis dose efficiency with change of technical scan parameters such as focal spot size of tube, beam collimation, detector combination, scan mode, pitch size, slice width and interval. The results obtained were as follows ; 1. SDCT was most highest and 4 MDCT was most lowest in z-axis geometric dose efficiency among SDCT, 4, 8, 16, 64 slice MDCT made by GE manufacture. 2. Small focal spot was 0.67-13.62% higher than large focal spot in z-axis geometric dose efficiency at MDCT. 3. Large beam collimation was 3.13-51.52% higher than small beam collimation in z-axis geometric dose efficiency at MDCT. 4. Z-axis geometric dose efficiency was same at 4 slice MDCT in all condition and 8 slice MDCT of large beam collimation with change of detector combination, but was changed irregularly at 8 slice MDCT of small beam collimation and 16 slice MDCT in all condition with change of detector combination. 5. There was no significant difference for z-axis geometric dose efficiency between conventional scan and helical scan, and with change of pitch factor, as well as change of slice width or interval for image reconstruction. As a conclusion, for reduction of patient radiation dose delivered from CT examination we are particularly concerned with dose efficiency of equipment and have to select proper scanning parameters which increase z-axis geometric dose efficiency within the range of preserving optimum clinical information in MDCT examination.

  • PDF