• Title/Summary/Keyword: Z-Domain

Search Result 250, Processing Time 0.028 seconds

A Computational Approach for the Classification of Protein Tyrosine Kinases

  • Park, Hyun-Chul;Eo, Hae-Seok;Kim, Won
    • Molecules and Cells
    • /
    • v.28 no.3
    • /
    • pp.195-200
    • /
    • 2009
  • Protein tyrosine kinases (PTKs) play a central role in the modulation of a wide variety of cellular events such as differentiation, proliferation and metabolism, and their unregulated activation can lead to various diseases including cancer and diabetes. PTKs represent a diverse family of proteins including both receptor tyrosine kinases (RTKs) and non-receptor tyrosine kinases (NRTKs). Due to the diversity and important cellular roles of PTKs, accurate classification methods are required to better understand and differentiate different PTKs. In addition, PTKs have become important targets for drugs, providing a further need to develop novel methods to accurately classify this set of important biological molecules. Here, we introduce a novel statistical model for the classification of PTKs that is based on their structural features. The approach allows for both the recognition of PTKs and the classification of RTKs into their subfamilies. This novel approach had an overall accuracy of 98.5% for the identification of PTKs, and 99.3% for the classification of RTKs.

High Temperature Deformation Behavior of Al 5083 Alloy Using Deformation Processing Maps (변형가공도를 이용한 AI 5083 합금의 고온변형거동)

  • Ko, Byung-Chul;Kim, Jong-Hyun;Yoo, Yeon-Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.450-458
    • /
    • 1998
  • The high temperature deformation behavior of Al 5083 alloy has been studied in the temperature range of 350 to 520 ${\circ}C$ and strain rate range of 0.2 to 3.0/sec by torsion test. The strain rate sensitivity(m) of the material was evaluated and used for estabilishing power dissipation maps following the dynamic material model. These maps show the variation of efficiency of power dissipation(${\eta}$=2m/(2m+1)) with temperature and strain rate. Hot restoration of dynamic recrystallization (DRX) was analyzed from the flow curve, deformed microstructure, and processing maps during hot deformation. Also, the effect of deformation strain on the efficiency of power dissipation of the alloy was analysed using the processing maps. Moreover relationship between the hot-ductility and efficiency of power dissipation of the alloy depending on thmperature and strain rate was studied using the Zener-Hollomon parameter(Z=${\varepsilon}$exp(Q/RT) It is found that the maximum efficiency of power dissipation for DRX in Al 5083 alloy is about 74.6 pct at the strain of 0.2. The strain rate and temperature at which the efficiency peak occurred in the DRX domain is found to be ∼0.1/sec and ∼450${\circ}C$ respectively.

  • PDF

Numerical Study on the Fluid Flow and Heat Transfer Past a Cylinder with a Periodic Array of Circular Fins (원형 핀이 부착된 실린더 주위의 유동 및 열전달에 관한 수치적 연구)

  • Yoon, Hyun-Sik;Chun, Ho-Hwan;Lee, Dong-Hyuk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.285-293
    • /
    • 2006
  • Three-dimensional and time-dependent solution for the fluid flow and heat transfer past a circular cylinder with fins is obtained using accurate and efficient spectral methods. A Fourier expansion with a corresponding uniform grid is used along the circumferential direction. A spectral multi-domain method with a corresponding Chebyshev collocation is used along r-z plane to handle fins attached to the surface of a circular cylinder. At the Reynolds number of 300 based on a cylinder diameter, results with fins are compared with those without fins in order to see the effects of the presence of fins on three-dimensional and unsteady fluid flow and heat transfer past a bluff body. The detail structures of fluid flow and temperature field are obtained as a function of time to investigate how the presence of fins changes heat transfer mechanism related to the vortical structure in the wake region.

Analysis of Coplaner $LiNBO_3$ Waveguide Structures Applicable Electrooptic Modulator with FDTD method

  • Lee, Byung-Je;Byun, Joon-Ho;Kim, Nam-Young;Kim, Jong-Heon;Lee, Jong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1211-1217
    • /
    • 2000
  • The three-dimensional finite-difference time-domain (FDTD) method and the two-dimensional quasi-static formulation have been used to calculate the characteristic impedance and the microwave effective index of coplanar waveguide structures on Lithium Niobate ($LiNBO_3$) single crystal substrates with a yttria-stabilized zirconia (YSZ) or $SiO_2$ buffer layer. The results shown can be a good source to predict the modulator characteristics. The effects of the thin buffer layer and anisotropy of the $LiNBO_3$ crystal (x-cut and z-cut) are discussed. The comparison between the FDTD and quasi-static results shows good agreement. In this paper, the efficient modeling technique of the FDTD method for the coplanar waveguide (CPW) structures based on an anisotropic substrate with a thin buffer layer is developed.

  • PDF

NUMERICAL STUDY ON THE FLOW CHARACTERISTICS OF MANIFOLD FEED-STREAM IN POLYMER ELECTROLYTE FUEL CELL (고분자 전해질 연료전지의 매니폴드 설계 및 해석)

  • JUNG Hye-Mi;UM Sukkee;PARK Jungsun;LEE Won-Yong;KIM Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.260-263
    • /
    • 2005
  • The effects of internal manifold designs the reactant feed-stream in Polymer Electrolyte Fuel Cells (PEFCs) is studied to figure out mass flow-distribution patterns over an entire fuel cell stack domain. Reactants flows are modeled either laminar or turbulent depending on regions and the open channels in the bipolar plates are simulated by porous media where permeability should be pre-determined for computational analysis. In this work, numerical models for reactant feed-stream in the PEFC manifolds are classified into two major flow patterns: Z-shape and U-shape. Several types of manifold geometries are analyzed to find the optimal manifold configurations. The effect of heat generation in PEFC on the flow distribution is also investigated applying a simplified heat transfer model in the stack level (i.e. multi-cell electrochemical power-generation unit). This modeling technique is well suited for many large scale problems and this scheme can be used not only to account for the manifold flow pattern but also to obtain information on the optimal design and operation of a PEMC system.

  • PDF

Diagnosis of Fault and Abnormal Conditions in a Single-Phase Transformer Using S-parameter Measurement (S파라미터를 이용한 단상 변압기의 이상 상태 진단에 대한 연구)

  • Kim, Jeongeun;Kim, Kwangho;Nah, Wansoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1344-1352
    • /
    • 2018
  • In this paper, we propose a two-port S-parameter data to diagnose the fault conditions of a single-phase transformer. Using the S-parameters we can measure the reflection and transmission characteristics of signal power at the port of a transformer, which can also be converted into ABCD parameters and Z parameters through a well-known conversion formulas. Transformer fault diagnoses can be performed based on the intuitive and qualitative/quantitative characteristics of the these parameters. In addition, we can obtain wide frequency characteristics at the primary and secondary sides of the transformer, which can be used to get time domain responses using the inverse Fourier transformation with some specific input waveform. In order to verify the effectiveness of the proposed method, the fault conditions were analyzed in simulation and experiment for 3 kVA single phase transformer with 15: 5 turns ratio, and the validity of the proposed method was verified.

Identification of plastic deformations and parameters of nonlinear single-bay frames

  • Au, Francis T.K.;Yan, Z.H.
    • Smart Structures and Systems
    • /
    • v.22 no.3
    • /
    • pp.315-326
    • /
    • 2018
  • This paper presents a novel time-domain method for the identification of plastic rotations and stiffness parameters of single-bay frames with nonlinear plastic hinges. Each plastic hinge is modelled as a pseudo-semi-rigid connection with nonlinear hysteretic moment-curvature characteristics at an element end. Through the comparison of the identified end rotations of members that are connected together, the plastic rotation that furnishes information of the locations and plasticity degrees of plastic hinges can be identified. The force consideration of the frame members may be used to relate the stiffness parameters to the elastic rotations and the excitation. The damped-least-squares method and damped-and-weighted-least-squares method are adopted to estimate the stiffness parameters of frames. A noise-removal strategy employing a de-noising technique based on wavelet packets with a smoothing process is used to filter out the noise for the parameter estimation. The numerical examples show that the proposed method can identify the plastic rotations and the stiffness parameters using measurements with reasonable level of noise. The unknown excitation can also be estimated with acceptable accuracy. The advantages and disadvantages of both parameter estimation methods are discussed.

Chemical Transformation of Individual Asian Dust Particles Estimated by the Novel Double Detector System of Micro-PIXE

  • Ma, Chang-Jin
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.2
    • /
    • pp.106-114
    • /
    • 2010
  • By the application of novel double detector system of micro-PIXE that can detect light elements (Z<14), we made an attempt to provide a thorough discussion on the aging processes of Asian dust (hereafter called "AD") particle by reaction with sea-slat. The elemental spectra and maps obtained from the microbeam radiation of micro-PIXE to individual AD particles were useful for fractionating AD particles into both internally and externally mixed particles. A spatial distribution of elements in a minute domain of single particle obtained by scanning the microbeam irradiation enabled us not only to estimate the chemical mixing state of individual AD particles but also to presume their aging processes in both ambient air and cloud. By calculating the normalized micro-PIXE net count of elements, it was possible to classify individual AD particles into three distinct groups (i.e., (1) Aging type 1: AD particle coated by the gaseous Cl evaporated by the reaction between artificial acids and sea salt; (2) Aging type 2: AD particle mixed with sea salt but no additional reaction with artificial acids; and (3) Non-aged type) A relatively high transformation rate (63.3-75.9%) was shown in large particles (greater than $5.1\;{\mu}m$ in diameter).

Design and Test of ESS DC-DC Converter using Zinc-Bromine Redox Flow Battery for Stand-alone Microgrid (Zinc-Bromine 레독스 플로우 배터리를 이용한 독립형 마이크로그리드 ESS DC-DC 컨버터 설계 및 실증)

  • Choe, Jung-Muk;Ra, Sun-Gil;Han, Dong-Hwa;Lee, Yong-Jin;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.106-115
    • /
    • 2014
  • This paper proposes ESS DC-DC Converter using Redox Flow Battery (RFB) for stand-alone microgrid. Price, safety, expandability and dynamics are crucial in ESS. Reports show that Zinc-bromine (ZnBr) RFB is the best choice in ESS. Simple electrical ZnBr RFB model is obtained from charging test. DC-DC converter Inductor current-DClink Voltage model is proposed for the DC microgrid. For the controller design in z-domain, the K-factor method is by considering nature of the digital controller. The control performance has been verified with simulation and hardware experiments. Lastly 10kW DC microgrid using RFB test result is shown.

Representation Techniques for 4-Dimensional MR Images

  • Homma, Kazuhiro;Takenaka, Kenji;Nakai, Yoshihiko;Hirose, Takeshi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.429-431
    • /
    • 2002
  • Metabolic analysis of biological tissues, the interventional radiology in MRT (Magnetic Resonance Treatment) and for clinical diagnoses, representation of 4-Dimensional (4D) structural information (x,y,z,t) of biological tissues is required. This paper discusses image representation techniques for those 4D MR Images. We have proposed an image reconstruction method for ultra-fast 3D MRI. It is based on image interpolation and prediction of un-acquired pictorial data in both of the real and the k-space (the acquisition domain in MRI). A 4D MR image is reconstructed from only two 3D MR images and acquired a few echo signals that are optimized by prediction of the tissue motion. This prediction can be done by the phase of acquired echo signal is proportioned to the tissue motion. On the other hand, reconstructed 4D MR images are represented as a 3D-movie by using computer graphics techniques. Rendered tissue surfaces and/or ROIs are displayed on a CRT monitor. It is represented in an arbitrary plane and/or rendered surface with their motion. As examples of the proposed representation techniques, the finger and the lung motion of healthy volunteers are demonstrated.

  • PDF