• Title/Summary/Keyword: Yttria ($Y_2O_3$)

Search Result 166, Processing Time 0.028 seconds

An Investigation of the Stability of Y2O3 and Sintering Behavior of Fe-Based ODS Particles Prepared by High Energy Ball Milling

  • Park, Eun-Kwang;Hong, Sung-Mo;Park, Jin-Ju;Lee, Min-Ku;Rhee, Chang-Kyu;Seol, Kyeong-Won
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.275-279
    • /
    • 2013
  • Fe-based oxide dispersion strengthened (ODS) powders were produced by high energy ball milling, followed by spark plasma sintering (SPS) for consolidation. The mixed powders of 84Fe-14Cr-$2Y_2O_3$ (wt%) were mechanically milled for 10 and 90 mins, and then consolidated at different temperatures ($900{\sim}1100^{\circ}C$). Mechanically-Alloyed (MAed) particles were examined by means of cross-sectional images using scanning electron microscopy (SEM). Both mechanical alloying and sintering behavior was investigated by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HR-TEM). To confirm the thermal behavior of $Y_2O_3$, a replica method was applied after the SPS process. From the SEM observation, MAed powders milled for 10 min showed a lamella structure consisting of rich regions of Fe and Cr, while both regions were fully alloyed after 90 min. The results of sintering behavior clearly indicate that as the SPS temperature increased, micro-sized defects decreased and the density of consolidated ODS alloys increased. TEM images revealed that precipitates smaller than 50 nm consisted of $YCrO_3$.

Studies on the fabrication and properties of $La_ 0.7Sr_0.3MnO_3$cathode contact prepared by glycine-nitrate process and solid state reaction method for the high efficient solid oxide fuel cells applications 0.3/Mn $O_{3}$ (고효율 고체산화물 연료전지 개발을 위한 자발 착화 연소 합성법과 고상반응법에 의한 $La_ 0.7Sr_0.3MnO_3$ 양극재료 제조 및 물성에 관한 연구)

  • Shin, Woong-Shun;Park, In-Sik;Kim, Sun-Jae;Park, Sung
    • Electrical & Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.141-149
    • /
    • 1997
  • L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ powders were prepared by both GNP(Glycine-Nitrate Process) and solid state reaction method in various of calcination temperature(800-1000.deg. C) and time in air. Also, L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ cathode contacts on YSZ(Yttria-Stabilized Zirconia) substrate were prepared by screen printing and sintering method as a function of sintering temperature(1100-1450.deg. C) in air. Sintering behaviors have been investigated by SEM(Scanning Electron Microscope) and porosity measurement. Compositional and structural characterization were carried out by X-ray diffractometer and ICP AES(Inductively Coupled Plasma-Atomic Emission Spectrometry) analysis. Electrical characterization was carried out by the electrical conductivity with linear 4 point probe method. As the calcination period increased in solid state reaction method, L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ phase increased. Although L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ single phase was obtained only for 48hrs at 1000.deg. C, in GNP method it was easy to get single and ultra-fine L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ powders with submicron particle size at 650.deg. C for 30min. The particle size and thickness of L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ cathode contact by solid state reaction method did not change during the heat treatment, while those by GNP method showed good sintering characteristics because initial powder size fabricated from GNP method is smaller than that fabricated from solid state reaction method. Based on enthalpy change from thermodynamic data and ICP-AES analysis, it was suggested to make cathode contact in composition of (L $a_{0.7}$S $r_{0.3}$)$_{0.91}$ Mn $O_{3}$ which have little second phase (L $a_{2}$Z $r_{2}$ $O_{7}$) for high efficient solid oxide fuel cells applications. As (L $a_{0.7}$S $r_{0.3}$)$_{0.91}$Mn $O_{3}$ cathode contact on YSZ substrate was sintering at 1250.deg. C the temperature that liquid phase sintering did not occur. It was possible to obtain proper cathode contacts with electrical conductivity of 150(S/cm) and porosity content of 30-40%.m) and porosity content of 30-40%.

  • PDF

Properties of Dental CAD/CAM Zirconia (CAD/CAM 지르코니아 재료의 특성)

  • Bae, Tae-Sung
    • The Journal of the Korean dental association
    • /
    • v.49 no.5
    • /
    • pp.260-264
    • /
    • 2011
  • Zirconia ($ZrO_2$) is a crystalline dioxide of zirconium. Dental zirconia blocks for CAD/CAM are usually fabricated with powders of tetragonal zirconia polycrystals (TZP) stabilized with 3mol% yttria. Because of its mechanical properties similar to those of metals and color similar to tooth, it is evaluated to attain the two purposes at a time, strength and aesthetic in prosthetic dentistry. The ability of transformation of Y-TZP from tetragonal to monoclinic helps to prevent crack propagation and contributes the increase of strength and fracture toughness. Two different types of blocks, soft and hard, are used to prepare the zirconia frameworks. The fuzzy-sintered block is difficult in machining, so pre-sintered soft 3Y-TZP block is usually used to mill by computer aided machining.

Electrical Properties of YSZ Electrolyte Film Prepared by Electron Beam PVD (EB-PVD법에 의해 제조된 YSZ 전해질의 전기적 특성)

  • Shin, Tae-Ho;Yu, Ji-Haeng;Lee, Shiwoo;Han, In-Sub;Woo, Sang-Kuk;Hyun, Sang-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.117-122
    • /
    • 2005
  • Electron Beam Physical Vapor Deposition (EB-PVD) is a typical technology for thermal barrier coating with Yttria Stabilized Zirconia (YSZ) on aero gas turbine engine. In this study EB-PVD method was used to fabricate dense YSZ film on NiO-YSZ as a electrolyte of Solid Oxide Fuel Cell (SOFC). Dense YSZ films of -10 $\mu$m thickness showed nano surface structure depending on deposition temperature. Electrical conductivities of YSZ film and electric power density of the single cell were evaluated after screen- printing $LaSrCoO_3$ as a cathode.

Effect of Substrate Rotation on the Phase Evolution and Microstructure of 8YSZ Coatings Fabricated by EB-PVD

  • Park, Chanyoung;Choi, Seona;Chae, Jungmin;Kim, Seongwon;Kim, Hyungtae;Oh, Yoon-Suk
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.81-86
    • /
    • 2016
  • The effect of substrate rotation speed on the phase forming behavior and microstructural variation of 8 wt% yttria ($Y_2O_3$) stabilized $ZrO_2$ (8YSZ) coatings as a thermal barrier coating has been investigated. 8YSZ coatings with $100{\sim}200{\mu}m$ thickness were deposited by electron beam-physical vapor deposition onto a super alloy (Ni-Cr-Co-Al) substrate with a bond coating (NiCo-CrAlY). The width of the columnar grains of the 8YSZ coatings increased with increasing substrate rotation speed from 1 to 30 rpm at a substrate temperature range of $900{\sim}950^{\circ}C$. In spite of the different growth behaviors of coatings with different substrate rotation speeds, the phases of each coating were not changed remarkably. Even after post heat treatments with various conditions of the coated specimens fabricated at 20 rpm, only a change of color was noticeable, without any remarkable change in the phase or microstructure.

Wear characteristics of plasma sprayed yttria-stabilized zirconia coating as phase transformation (지르코니아 용사코팅의 상변화에 따른 마멸특성)

  • Park, Chan;Chae, Young-Hun;Kim, Seock-Sam
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.322-330
    • /
    • 2001
  • The plasma-sprayed 8%Y$_2$O$_3$-Zirconia coating was studied to know the relationship between phase transformation and wear properties after several heat treatment. Wear tests were carried out with ball on disk on 50N, 70N, 90N. The specimen in this study was cast iron and tests were performed on room temperature. The transformation of phase and residual stress was measured by x-ray diffraction method(XRD) and worn surface were observed by SEM.

  • PDF

Study on Possibility of PrBaMn2O5+δ as Fuel Electrode Material of Solid Oxide Electrolysis Cell (이중 페로브스카이트 촉매 PrBaMn2O5+δ의 고온전기분해조(Solid Oxide Electrolysis Cell) 연료극 촉매로 적용 가능성에 대한 연구)

  • Kwon, Youngjin;Kim, Dongyeon;Bae, Joongmyeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.491-496
    • /
    • 2017
  • The hydrogen($H_2$) is promising energy carrier of renewable energy in the microgrid system such as small village and military base due to its high energy density, pure emission and convenient transportation. $H_2$ can be generated by photocatalytic water splitting, gasification of biomass and water electrolysis driven by solar cell or wind turbine. Solid oxide electrolysis cells(SOECs) are the most efficient way to mass production due to high operating temperature improving the electrode kinetics and reducing the electrolyte resistance. The SOECs are consist of nickel-yttria stabilized zirconia(NiO-YSZ) fuel electrode / YSZ electrolyte / lanthanum strontium manganite-YSZ(LSM-YSZ) air electrode due to similarity to Solid Oxide Fuel Cells(SOFCs). The Ni-YSZ most widely used fuel electrode shows several problems at SOEC mode such as degradation of the fuel electrode because of Ni particle's redox reaction and agglomeration. Therefore Ni-YSZ need to be replaced to an alternative fuel electrode material. In this study, We studied on the Double perovskite $PrBrMnO_{5+{\delta}}$(PBMO) due to its high electric conductivity, catalytic activity and electrochemical stability. PBMO was impregnated into the scaffold electrolyte $La_{0.8}Sr_{0.2}Ga_{0.85}Mg_{0.15}O_{3-{\delta}}$(LSGM) to be synthesized at low temperature for avoiding secondary phase generated when it exposed to high temperature. The Half cell test was conducted at SOECs and SOFCs modes.

Electrical Property Changes of $\textrm{NO}_X$ Sensitive $\textrm{WO}_3$ Thin Films as Applied DC Voltages on 8YSZ Substrate (8YSZ 기판에 증착한 $\textrm{WO}_3$ 박막의 DC 전압에 따른 $\textrm{NO}_X$ 감지특성)

  • 전춘배;박기철
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.1
    • /
    • pp.8-12
    • /
    • 1999
  • $\textrm{WO}_3$ semiconductive film, which is known to have a sensitivity on $\textrm{NO}_X$ gas was prepared on 8YSZ (8% Yttria stabilized $\textrm{ZrO}_2$) ionic conductor substrate that has oxygen ion pumping effect. Microstructure and electrical properity, especially $\textrm{NO}_X$ sensitivity as a function of DC voltage applied to 8YSZ substrate was examined. When the $\textrm{WO}_3$ film was annealed, it showed amorphous structure, while crystallization was occurred at $600^{\circ}$C revealing orthorhombic phase of $\textrm{WO}_3$. As the annealing temperature increases, (111) and (001) peaks of $\textrm{WO}_3$ film was enhanced. At $400^{\circ}C$ when DC voltage was applied, comparing with no DC bias, more stable and large response characteristics was showed, and the best sensitivity was observed at 2V. Recovery characteristics of NO gas was much better that that of $\textrm{NO}_2$ gas.

  • PDF

Progresses on the Optimal Processing and Properties of Highly Porous Rare Earth Silicate Thermal Insulators

  • Wu, Zhen;Sun, Luchao;Wang, Jingyang
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.6
    • /
    • pp.527-555
    • /
    • 2018
  • High-temperature thermal insulation materials challenge extensive oxide candidates such as porus $SiO_2$, $Al_2O_3$, yttria-stabilized zirconia, and mullite, due to the needs of good mechanical, thermal, and chemical reliabilities at high temperatures simultaneously. Recently, porous rare earth (RE) silicates have been revealed to be excellent thermal insulators in harsh environments. These materials display attractive properties, including high porosity, moderately high compressive strength, low processing shrinkage (near-net-shaping), and very low thermal conductivity. The current critical challenge is to balance the excellent thermal insulation property (extremely high porosity) with their good mechanical properties, especially at high temperatures. Herein, we review the recent developments in processing techniques to achieve extremely high porosity and multiscale strengthening strategy, including solid solution strengthening and fiber reinforcement methods, for enhancing the mechanical properties of porous RE silicate ceramics. Highly porous RE silicates are highlighted as emerging high-temperature thermal insulators for extreme environments.

In-Situ Fabrication of Micro-channeled Multi Tubular Solid Oxide Fuel Cell using Multi-pass Extrusion Process (다중압출 공정을 이용한 마이크로 채널 다중 원통형 고체산화물 연료전지의 in-situ 제조)

  • Byun, Ki-Cheon;Rahman, AHM Esfakur;Kim, Jong-Hee;Lee, Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.17 no.6
    • /
    • pp.313-317
    • /
    • 2007
  • In-situ micro-channeled multi tubular solid oxide fuel cell(SOFC) was fabricated using multi-pass extrusion process with out side diameter of 2.7 mm and active length of 5 mm that contained 61 individual cells. Cell materials used in this work were NiO-YSZ (50 : 50 vol.%), 8 mol% yttria-stabilized zirconia(8YSZ), $La_{0.8}Sr_{0.2}MnO_3(LSM)$ as anode, electrolyte, and cathode, respectively. The arrangement of each electrode and electrolyte layer in green bodies showed uniformity and integrity after extrusion and sintering. The XRD analysis confirmed that no reaction phases appeared and the microstructure of the electrolyte was fairly dense (relative density > 96%) after sintering.