• 제목/요약/키워드: Yttria

검색결과 347건 처리시간 0.028초

Growth Behavior of Thermally Grown Oxide Layer with Bond Coat Species in Thermal Barrier Coatings

  • Jung, Sung Hoon;Jeon, Soo Hyeok;Park, Hyeon-Myeong;Jung, Yeon Gil;Myoung, Sang Won;Yang, Byung Il
    • 한국세라믹학회지
    • /
    • 제55권4호
    • /
    • pp.344-351
    • /
    • 2018
  • The effects of bond coat species on the growth behavior of thermally grown oxide (TGO) layer in thermal barrier coatings (TBCs) was investigated through furnace cyclic test (FCT). Two types of feedstock powder with different particle sizes and distributions, AMDRY 962 and AMDRY 386-4, were used to prepare the bond coat, and were formed using air plasma spray (APS) process. The top coat was prepared by APS process using zirconia based powder containing 8 wt% yttria. The thicknesses of the top and bond coats were designed and controlled at 800 and $200{\mu}m$, respectively. Phase analysis was conducted for TBC specimens with and without heat treatment. FCTs were performed for TBC specimens at $1121^{\circ}C$ with a dwell time of 25 h, followed by natural air cooling for 1 h at room temperature. TBC specimens with and without heat treatment showed sound conditions for the AMDRY 962 bond coat and AMDRY 386-4 bond coat in FCTs, respectively. The growth behavior of TGO layer followed a parabolic mode as the time increased in FCTs, independent of bond coat species. The influences of bond coat species and heat treatment on the microstructural evolution, interfacial stability, and TGO growth behavior in TBCs are discussed.

졸-겔법을 이용한 고체산화물연료전지의 전해질 박막 제조 및 가스 투과도 (Preparation of Thin Film Electrolyte for Solid Oxide Fuel Cell by Sol-Gel Method and Its Gas Permeability)

  • 손희정;이혜종;임탁형;송락현;백동현;신동열;현상훈
    • 한국세라믹학회지
    • /
    • 제42권12호
    • /
    • pp.827-832
    • /
    • 2005
  • In this study, thin electrolyte layer was prepared by 8YSZ ($8mol\%$ Yttria-Stabilized Zirconia) slurry dip and sol coating onto the porous anode support in order to reduce ohmic resistance. 8YSZ polymeric sol was prepared from inorganic salt of nitrate and XRF results of xerogel powder exhibited similar results $(99.2\pm1wt\%)$ compared with standard sample (TZ-8YS, Tosoh Co.). The dense and thin YSZ film with $1{\mu}m$ thickness was synthesized by coating of 0.7M YSZ sol followed by heat-treatment at $600^{\circ}C$ for 1 h. Thin film electrolyte sintered at $1400^{\circ}C$ showed no gas leakage at the differential pressure condition of 3 atm.

ZrO2(Y2O3)계 세라믹스의 소결성과 전기전도도에 대한 M2O3의 영향(III) : ZrO2-Y2O3-Ln2O3계 세라믹스 (Effect of M2O3 on the Sinterbility and Electrical Conductivity of ZrO2(Y2O3) System(III) : Ceramics of the ZrO2-Y2O3-Ln2O3 System)

  • 오영제;정형진;이희수
    • 한국세라믹학회지
    • /
    • 제24권2호
    • /
    • pp.123-132
    • /
    • 1987
  • Yttria-stabilized zirconia with erbia-lanthana were investigated with respect to the amount of Ln2O3 (Ln; Er, La) addition in the range of 0.5∼5 mol% to the base composition of 8 mol% yttriazirconia. Following analysis and measurement were adopted for the characterization of synthesizes of solid electrolyte; phase transformation, lattice parameter, crystallite size, relative density, chemical composition and SEM/EDS. Electrical conductivity by two-probe method versus temperature from 350$^{\circ}C$ to 800$^{\circ}C$ and frequency in the range of 5Hz∼13MHz by complex impedance method was also conducted together with the determination of oxygen ion transference number by EMF method for the evaluation of their electrical properties. The results were as followsing; Electrical conductivity were decreased with increase in Ln2O3 content, but their activation energies increased. In the case of La2O3 addition, espicially, its electrical conductivity was decreased owing to the segregation of second phases at the grain-boundary. Grain-boundary conductivity of the specimen contained 0.5 mol% Er2O3 exhibited a maximum conductivity among thecompositions experimented. However, their bulk conductivities decreased in both case. Oxygen ion transference number was also reduced with decrease in oxygen partial pressure. For example, in the case of Er2O3 addition it retained value in the range of 0.97∼0.94 abvove 4.74${\times}$10-2in oxygen partial pressure. With the increase in the quantities of the evaporation of additive components, the crystallite size of stabilized zirconia decreased, and their relative density also reduced owing to the formation of porosity in their matrices. In the case of La2O3 the sinterbility was improved in the limited amount of addition up to 0.5 mol%, in the same range of addition the strength of sintered bodies were improved perhaps owing to the precipitation of metastable tetragonal phase in the fully stabilized zirconia.

  • PDF

In-situ spectroscopic studies of SOFC cathode materials

  • 주종훈
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.70.1-70.1
    • /
    • 2012
  • In-situ X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy studies of SOFC cathode materials will be discussed in this presentation. The mixed conducting perovskites (ABO3) containing rare and alkaline earth metals on the A-site and a transition metal on the B-site are commonly used as cathodes for solid oxide fuel cells (SOFC). However, the details of the oxygen reduction reaction are still not clearly understood. The information about the type of adsorbed oxygen species and their concentration is important for a mechanistic understanding of the oxygen incorporation into these cathode materials. XPS has been widely used for the analysis of adsorbed species and surface structure. However, the conventional XPS experiments have the severe drawback to operate at room temperature and with the sample under ultrahigh vacuum (UHV) conditions, which is far from the relevant conditions of SOFC operation. The disadvantages of conventional XPS can be overcome to a large extent with a "high pressure" XPS setup installed at the BESSY II synchrotron. It allows sample depth profiling over 2 nm without sputtering by variation of the excitation energy, and most importantly measurements under a residual gas pressure in the mbar range. It is also well known that the catalytic activity for the oxygen reduction is very sensitive to their electrical conductivity and oxygen nonstoichiometry. Although the electrical conductivity of perovskite oxides has been intensively studied as a function of temperature or oxygen partial pressure (Po2), in-situ measurements of the conductivity of these materials in contact with the electrolyte as a SOFC configuration have little been reported. In order to measure the in-plane conductivity of an electrode film on the electrolyte, a substrate with high resistance is required for excluding the leakage current of the substrate. It is also hardly possible to measure the conductivity of cracked thin film by electrical methods. In this study, we report the electrical conductivity of perovskite $La_{0.6}Sr_{0.4}CoO_{3-{\delta}}$ (LSC) thin films on yttria-stabilized zirconia (YSZ) electrolyte quantitatively obtained by in-situ IR spectroscopy. This method enables a reliable measurement of the electronic conductivity of the electrodes as part of the SOFC configuration regardless of leakage current to the substrate and cracks in the film.

  • PDF

Y(NO3)3·6H2O 첨가된 AlN 소결체의 기계적 및 열전도도 특성 (Mechanical and Thermal Conductivity Properties of Yttrium Nitrate Added AlN Sintering Body)

  • 정준기;이정훈;하태권
    • 소성∙가공
    • /
    • 제27권1호
    • /
    • pp.48-53
    • /
    • 2018
  • Aluminum nitride (AlN) is used by the semiconductor industry that has requirements for high thermal conductivity. The theoretical thermal conductivity of single crystal AlN is 320W/mK. Whereas, the values measured for polycrystalline AlN ceramics range from 20 W/mK to 280 W/mK. The variability is strongly dependent upon the purity of the starting materials and non-uniform dispersibility of the sintering additive. The conventional AlN sintering additive used yttria ($Y_2O_3$), but the dispersibility of the powder in the mixing process was important. In this study, we investigated the mechanical and thermal conductivity of yttrium nitrate ($Y(NO_3)_3{\cdot}6H_2O$), as a sintering additive in order to improve the dispersibility of $Y_2O_3$. The sintering additives content was in the range of 2 to 4.5wt.%. The density of AlN gradually increased with increasing contents of sintering additive and the flexural strength gradually increased as well. The flexural strength of the sintered body containing 4 wt% of $Y_2O_3$ and $Y(NO_3)_3{\cdot}6H_2O$ was 334.1 MPa and 378.2 MPa, respectively. The thermal conductivities were 189.7W/mK and 209.4W/mK, respectively. In the case of hardness, there was only a slight difference and the average value was about 10 GPa. Therefore, densification, density and strength values were found to be proportional to its content. It was confirmed that AlN using $Y(NO_3)_3{\cdot}6H_2O$ displayed relatively higher thermal conductivity and mechanical properties than the $Y_2O_3$.

렌즈절삭용 탄화규소계 공구의 크랙전파 거동 (Crack Path Behavior of SiC Based Tools for Spectacle Lens Cutting)

  • 이영일
    • 한국안광학회지
    • /
    • 제11권2호
    • /
    • pp.85-89
    • /
    • 2006
  • 렌즈 절삭공구의 기계적 특성을 향상시키는 기구에 관한 연구를 하기 위해, 탄화규소와 탄화티타늄을 주재료로 사용되었다. 또한, 소결첨가제로 알루미나와 이트리아를 첨가하였다. 첨가제 조성비는 알루미나와 이트리아비를 1:1로 유지하였다. 이를 $1810^{\circ}C$에서 1시간 일축가압 소결 후 $1860^{\circ}C$에서 3, 6 그리고 12시간 동안 열처리하였다. 열처리 시간이 길어질수록 입자크기는 점점 증가하였다. 미세구조는 주사전자현미경으로 관찰하였으며 이미지프로그램(Image-Pro Plus, Media Cybernetics, Maryland, U.S.A.)으로 상분석 하였다. 파괴기구는 주로 길게 자란 탄화규소 입자에 의한 균열회절에서 일어나고 있음을 알 수 있다. 균열회절기구에 영향을 미친 SiC입자들은 대부분 두께가 $2.3{\mu}m$ 이하였고, 장경비는 2.5 이상이었다. 균열가교도 일부 파괴인성 증진기구에 기여함을 알 수 있다.

  • PDF

서스펜션 플라즈마 용사법을 이용한 La2Zr2O7/YSZ 2층세라믹 열차폐코팅의 제조와 특성평가 (Fabrication and Characterization of La2Zr2O7/YSZ Double-Ceramic-Layer Thermal Barrier Coatings Fabricated by Suspension Plasma Spray)

  • 권창섭;이수진;이성민;오윤석;김형태;장병국;김성원
    • 한국표면공학회지
    • /
    • 제48권6호
    • /
    • pp.315-321
    • /
    • 2015
  • Rare-earth zirconates, such as $La_2Zr_2O_7$ and $Gd_2Zr_2O_7$, have been investigated as one of the candidates for replacing conventional yttria-stabilized zirconia (YSZ) for thermal barrier coating (TBC) applications at higher turbine inlet temperatures. In this study, double-ceramic-layer (DCL) TBCs of YSZ 1st layer and $La_2Zr_2O_7$ top coat layer are fabricated by suspension plasma spray with serial liquid feeders. Microstructures, hardness profiles, and thermal durability of DCL-TBCs are also characterized. Fabricated DCL-TBCs of YSZ/$La_2Zr_2O_7$ exhibit excellent properties, such as adhesion strength (>25 MPa) and electrical thermal fatigue (~1429 cycles), which are comparable with TBCs fabricated by atmospheric plasma spray.

서스펜션 플라즈마 용사법으로 제조한 La2Zr2O7, (La0.5Gd0.5)2Zr2O7, Gd2Zr2O7 열차폐코팅의 상형성과 열전도 특성 (Phase Formation and Thermal Diffusivity of Thermal Barrier Coatings of La2Zr2O7, (La0.5Gd0.5)2Zr2O7, Gd2Zr2O7 Fabricated by Suspension Plasma Spray)

  • 김선주;이성민;오윤석;김형태;장병국;김성원
    • 한국표면공학회지
    • /
    • 제49권6호
    • /
    • pp.604-611
    • /
    • 2016
  • In order to comply with demand for high efficient gas turbines operating at higher temperatures, considerable amounts of research efforts have been performed with searching for the next-generation thermal barrier coatings (TBCs) with respect to coating materials as well as processing methods. In this study, thermal barrier coatings in the $(La_{1-x}Gd_x)_2Zr_2O_7$ system, which is one of the most versatile materials replacing yttria-stabilized zirconia (YSZ), are fabricated by suspension plasma spray with suspension made of synthesized powders via solidstate reaction. Dense, $100{\sim}400{\mu}m$ thick coatings of fluorite-phase zirconate with moderate amount of segmented microstructures are obtained by using suspension plasma spray. Phase formation and thermal diffusivity are characterized with coating compositions. The feasibility of $(La_{1-x}Gd_x)_2Zr_2O_7$ coatings for TBC applications is also discussed.

지르코니아 코어와 전장용 세라믹의 결합 강도에 대한 표면 처리 방법 평가 (Evaluation of surface treatment methods on the bond strength of veneer ceramic to the zirconia core)

  • 이광영;홍민호
    • 대한치과기공학회지
    • /
    • 제42권3호
    • /
    • pp.213-219
    • /
    • 2020
  • Purpose: This study aimed to identify the impact of physical surface roughing with a polishing tool onto the pre-sintering yttria-stabilized tetragonal zirconia polycrystals (TZP) core and liner treatment for chemical bonding on the bond strength of TZP core and veneering ceramic. Methods: Overall, 80 specimens were classified into two groups (non-liner, NL; and usingliner, UL ) depending on the use of liner, and these two groups were then subclassified into four groups depending on the polishing tool used. (1) Non-liner groups: NS, non-liner+stone point; NC, non-liner+carbide bur; NP, non-liner+paper cone point; NT, non-liner+silicon point. (2) Using-liner groups: US, using-liner+stone point; UC, using-liner+carbide bur; UP, usingliner+paper cone point; UT, using-liner+silicon point. The pre-sintering surface roughing values and shapes were observed, and after burning up the veneering ceramic, the shear bond strength was measured using a universal testing machine. For significance testing, a one-way analysis of variance and Tukey's multiple comparison test were conducted. An optical microscope was used to observe the fracture plane, and the following results were obtained. Results: Surface roughness NP (4.09±0.51 ㎛) represented a higher value than other groups (p<0.001). In shear bond strength, NS (35.21±1.44 MPa) of the NL group showed the highest bond strength (p<0.001). The UL group did not show a statistically significant difference between groups (p=0.612). Conclusion: Our study findings reveal that the bond strength of TZP core and veneering ceramic was improved by pre-sintering physical surface treatment than by chemical bonding with liner surface treatment.

Pulsed Wire Evaporation(PWE) Method으로 제조된 나노 NiO 분말의 SOFC 연료극 기능성층으로의 적용 (The Effect of Using Nano NiO Powder Made by Pulsed Wire Evaporation (PWE) Method on SOFC Anode Functional Layer)

  • 김혜원;김동주;박석주;임탁형;이승복;신동렬;윤순길;송락현
    • 한국수소및신에너지학회논문집
    • /
    • 제20권6호
    • /
    • pp.485-491
    • /
    • 2009
  • In present work, NiO/YSZ anode functional layer was prepared by nano NiO powder and 8YSZ powder. The nano NiO powders were made by Pulsed wire evaporation (PWE) method. Nano NiO- YSZ functional layer was sintered at the temperature of $900-1400^{\circ}C$. The prepared functional layer was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy. The nano NiO- YSZ anode functional layer sintered at $1300^{\circ}C$ shows the lowest polarization resistance. Nano NiO- YSZ anode functional layer shows about two times smaller polarization resistance than the anode functional layer made by commercial NiO-YSZ powders. Based on these experimental results, it is concluded that the nano NiO-YSZ cermet is suitable as a anode functional layer operated at $800^{\circ}C$.