• Title/Summary/Keyword: Youngsan Estuary

Search Result 51, Processing Time 0.024 seconds

Effect of a Barrier on Tides in the Youngsan Estuary (영산강하구(榮山江河口)의 방조제건설(防潮堤建設) 조위변화(潮位變化))

  • Choi, Byoung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.2
    • /
    • pp.113-124
    • /
    • 1984
  • This study represents results of analysis of sea level record at Mokpo for the years 1956~1982. The results are believed to be the first detailed analysis for the Port of Mokpo. The tidal constants are obtained from separate yearly extended harmonic analysis. The variability of these yearly analysis gives estimates of effects on astronomical tide due to Youngsan Barrier. Multiple statistics of sea level record for the years 1965~1980 and 1981~1982 are presented separately to evaluate the distribution of sea level frequency due to the construction of Barrier. Some of preliminary results are presented and indication of further studies are discussed.

  • PDF

Effects of Ocean Outfall for Elimination of the Anoxic Layer in Youngsan River Estuary (영산강 하구언에서 저 산소 층의 제거를 위한 해양방류구의 효과)

  • Kwon, Seok-Jae;Cho, Yang-Ki;Seo, Uk-Won
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.4
    • /
    • pp.259-268
    • /
    • 2005
  • There has been a growing interest in the elimination of anoxic layer in the Youngsan River Estuarybecause the anoxic water mass caused mainly by the inflow of fresh water from the sea wall might cause the mass reduction of benthos during summer. An ocean outfall system to discharge treated wastewater into sea water may be used as one of the effective and economical ways to eliminate the anoxic layer. The suitable ocean outfall design is generally proposed for the prediction of the buoyant jet behavior in the near field. The parameters including CTD and current data are taken into account f3r more reliable buoyant jet behavior calculation. One of the numerical models, CORMIX 1, approved by EPA is used herein for the prediction of the trajectorial variation of the cross-sectional salinity and DO concentration distribution on the calculated buoyant jet boundary according to the tidal periods. On the basis of the results, it is suggested that the single port outfall is a useful system to eliminate the anoxic layer. Proper strategies are also proposed for achieving desirable ambient conditions.

The Change of Coastal Water Area due to the Development of Mokpo Harbor and Construction of Daebul Industrial Complex(I) (목포항 개발 및 대불 산업단지 조성에 따른 연안해역 변화(I)- 해면 정온도를 중심으로 -)

  • 이중우;정명선
    • Journal of the Korean Institute of Navigation
    • /
    • v.15 no.2
    • /
    • pp.87-96
    • /
    • 1991
  • The change of water level at Mokpo Harbour and its adjacent coastal area due to the construction of the Youngsan Estuary Barrage and the Third Land Reclamation Work of estuary barren had been roughly expected. Periodical floods, which occur 2 times per month, are also being observed at the low lying commercial areas near the Mokpo Old Harbor. Although it is said that the highest tidal current component among the tidal current records at the approaching channel to Mokpo Harbor is reduced to 6 kts, because of the esturary barrage, they do not give any precise statement or a deep analysis for the flooding and periodical water level change under certain environmental conditions. Moreover, they never tried the analysis of development plan considering the natural disaster such as typhoon or other extreme conditions. Thus, it is necessary to collect and analyze the data related to floodings, harbor oscillations, currents, and water quality , etc. because of the development considering the extreme condition. Thus, it is necessary to collect and analyze the data related to floodings, harbor oscillations, currents, and water quality, etc. because of the development considering the extreme condition and to evaluate the field observation and measurement, including the numerical model simulation based on the scientific approaches. This study deals the problem of the water level change among the integrated analyses of the coastal area changes. The result can be used for the integrated planning to give a strong foundation and it will contribute to the development of local area.

  • PDF

Material Budgets in the Youngsan River Estuary with Simple Box Model (영산강 하구해역에서의 단순 박스모델에 의한 물질수지)

  • Lee, Kyeong-Sig;Jun, Sue-Kyung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.248-254
    • /
    • 2009
  • Budgets of fresh water, salt, DIP and DIN in the Youngsan river estuary were estimated seasonally in order to clarify the characteristics of material cycling and flux of nutrients with a simple box model. Inflow volumes of freshwater into system was approximately $36.481{\times}10^6{\sim}663.634{\times}10^6m^3/month$ and existing water mass of freshwater in system calculated by salt budget was approximately $2.515{\times}10^6{\sim}5.812{\times}10^6m^3$. Mean residence time of freshwater was calculated to be about 0.26~2.03 day. water exchange $1,248{\times}10^6{\sim}9,489{\times}10^6m^3/month$ assumed with salinity between estuary and adjacent ocean. Inflow mass of DIN and DIN were approximately 76.63~1,149.91 ton/month and 2.91~61.22 ton/month, respectively. Residence times of DIP and DIN were calculated to be 0.45~1.10 day and 0.28~1.92 day, respectively. The ratio of water residence time versus DIP, DIN residence time was calculated that freshwater residence time was longer than DIP, DIN residence time except for summer season. Thus, We assume that circulation of Nutrients in the system will happen rapidly except for summer season. Specially DIP in Winter could assume to outer input source existence because of seawater inflow in system and high DIP concentration in open sea.

  • PDF

A Comparative Study on Limno-biological Aspects of the Dammed Lakes in the Youngsan River in Korea - Centering on Fish Fauna - (영산강 수계 댐호의 육수생물학적 비교연구 ( 1 ) - 어류상을 중심으로 -)

  • Nah, Chang-Soo
    • The Korean Journal of Ecology
    • /
    • v.12 no.1
    • /
    • pp.51-65
    • /
    • 1989
  • Some aspects of limno-biology of the five dammed lakes such as Tamyang, Changsong, Kwangju, Naju, and Youngsan Lake along the Yongsan River were investigated from June 1986 to July 1988 for the comparison on the lentic ecosystems in relation to the fish fauna. Sixty four fish species representing 48 genera and 21 families of fishes were collected in these dammed areas, which included 29 species of the family Cyprinidea and 40 speaies of the primary fresh-water fishes. Among, these, 12 species such as Rhodeus Acheilognothus yamatsutae, A canathorhodeus gracilis, Sarcocheilichthys nigripinis morii, S. variegatus wakiyae, Gnathopogon strigatus, Squalidus gracilis majimae, Microphysogobio yaluensis, Cobitis longicorpus sp, Liobagrus mediadiposalis and Odontobutis platycephala are enddmic to Korea. Leiocassis nitidus and Gasterosteus aculeatus which occur in these water areas take note of the zooge rographic study of Korea. The fish species in each of the dammed lakes is in proportion of the scale of the lakes such as 32 species in Thamyang, 40 species in Changsong, 24 species in Kwangju, 35 species in Jaju, and 52 species in Yongsan Lake. The dominant fish species of the 4 upper dammed lakes of Thamyang, Changsong, Kwangju and Naju Lake are Zacco platypus and Rhodeus uyekii, while those of Youngsan Lake are Hemiculter eigenmanni and Carassius auratus. This difference of fish species of those areas suggests that the upper damed lake differ from the lower dammed lakes in the habitable condition of fishes. The migratory fish species have significantly declined and will continue to decline in both population size and number of species in the dammed lakes in near future as a result of the dam construction barriers in the river estuary. The major migratory fishes of this water area are as follows; Anguilla japonica, Plecoglossus altivelis, Hypomesus olidus, Gasterosteus aculeatus, Konosirus Punctatus, Coilia ectens, Hemirhampus sajori, Mugil cephalus. Acanthogobius flavimanus, and Takifugu ocellatus.

  • PDF

River Flow Forecasting Model for the Youngsan Estuary Reservoir Operations(I) -Estimation Runof Hydrographs at Naju Station (영산호 운영을 위한 홍수예보모형의 개발(I) -나주지점의 홍수유출 추정-)

  • 박창언;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.4
    • /
    • pp.95-102
    • /
    • 1994
  • The series of the papers consist of three parts to describe the development, calibration, and applications of the flood forecasting models for the Youngsan Estuarine Dam located at the mouth of the Youngsan river. And this paper discusses the hydrologic model for inflow simulation at Naju station, which constitutes 64 percent of the drainage basin of 3521 .6km$^2$ in area. A simplified TANK model was formulated to simulate hourly runoff from rainfall And the model parameters were optirnized using historical storm data, and validated with the records. The results of this paper were summarized as follows. 1. The simplified TANK model was formulated to conceptualize the hourly rainfall-run-off relationships at a watershed with four tanks in series having five runoff outlets. The runoff from each outlet was assumed to be proportional to the storage exceeding a threshold value. And each tank was linked with a drainage hole from the upper one. 2. Fifteen storm events from four year records from 1984 to 1987 were selected for this study. They varied from 81 to 289rn'm The watershed averaged, hourly rainfall data were determined from those at fifteen raingaging stations using a Thiessen method. Some missing and unrealistic records at a few stations were estimated or replaced with the values determined using a reciprocal distance square method from abjacent ones. 3. An univariate scheme was adopted to calibrate the model parameters using historical records. Some of the calibrated parameters were statistically related to antecedent precipitation. And the model simulated the streamflow close to the observed, with the mean coefficient of determination of 0.94 for all storm events. 4. The simulated streamflow were in good agreement with the historical records for ungaged condition simulation runs. The mean coefficient of determination for the runs was 0.93, nearly the same as calibration runs. This may indicates that the model performs very well in flood forecasting situations for the watershed.

  • PDF

River Flow Forecasting Model for the Youngsan Estuary Reservoir Operation( II) - Simulating Runoff Hydrograptis at Ungaged Stations - (영산호 운영을 위한 홍수예보모형의 개발(II) -나주하류유성에서의 총수유출 추정-)

  • 박창언;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.1
    • /
    • pp.65-72
    • /
    • 1995
  • This paper describes the applications of the SCS TR-20 hydrologic model for simula- tion of hourly inflow rates from sixty-six ungaged tributaries and subareas between the Naju station and the estuarin dam at the Yongsan River Basin. The model was tested for the ungaged conditions with fifteen storm events at Naju station. Hourly simulated run- off data were compared with the observed, and the results showed less correlationships between the two data than those from TANK model. The coefficients of correlation ranged from 0.74 to 0.87. The curve numbers and time of concentration were defined from topographic dta for each of sixty-six tributaries for the estuarine dam and used for TR-20 applications. The results were within an acceptable range of errors in simulating the inflow fluctuations for the flood forecasting at the estuarine dam.

  • PDF

Real-time Upstream Inflow Forecasting for Flood Management of Estuary Dam (담수호 홍수관리를 위한 상류 유입량 실시간 예측)

  • Kang, Min-Goo;Park, Seung-Woo;Kang, Moon-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.12 s.161
    • /
    • pp.1061-1072
    • /
    • 2005
  • A hydrological grey model is developed to forecast short-term river runoff from the Naju watershed located at upstream of the Youngsan estuary dam in Korea. The runoff of the Naju watershed is measured in real time at the Naju streamflow gauge station, which is a key station for forecasting the upstream inflow and operating the gates of the estuary dam in flood period. The model's governing equation is formulated on the basis of the grey system theory. The model parameters are reparameterized in combination with the grey system parameters and estimated with the annealing-simplex method In conjunction with an objective function, HMLE. To forecast accurately runoff, the fifth order differential equation was adopted as the governing equation of the model in consideration of the statistic values between the observed and forecast runoff. In calibration, RMSE values between the observed and simulated runoff of two and six Hours ahead using the model range from 3.1 to 290.5 $m^{3}/s,\;R^2$ values range from 0.909 to 0.999. In verification, RMSE values range from 26.4 to 147.4 $m^{3}/s,\;R^2$ values range from 0.940 to 0.998, compared to the observed data. In forecasting runoff in real time, the relative error values with lead-time and river stage range from -23.4 to $14.3\%$ and increase as the lead time increases. The results in this study demonstrate that the proposed model can reasonably and efficiently forecast runoff for one to six Hours ahead.

Trends of Phytoplankton Community and Water Quality and Implications for Management in Estuarine River Systems (국내 연안 하구역의 식물플랑크톤 생체량 (chlorophyll a) 및 수질 동향)

  • Lee, Chang-Hee;Cho, Ki-An;Song, Eun-Sook;Sin, Yong-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.2 s.112
    • /
    • pp.160-180
    • /
    • 2005
  • Long-term data (Ministry of Environment Water Quality Monitoring data) of phytoplankton biomass (chlorophyll a) and water quality were analyzed to investigate trends in biomass of the primary producers and water quality for the estuarine systems in Korea: Sumjin River, Han River, Asan Lake- Bay, Youngsan River, Keum River and Nakdong River. The literatures were also reviewed to examine the characteristics of phytoplankton biomass and water quality in the estuarine systems. The Sumjin River estuary, the single estuary without a dike in Korea showed the characteristics similar to other typical estuarine systems. Phytoplankton biomass was high during the fall at transitional regions (5 ${\sim}$ 15 psu) after riverine freshwater inputs were increased in summer. Concentrations of the nitrate and silicate were increased with the high river discharge rates. Phytoplankton biomass and nutrient concentrations were high during spring at the lower regions in the Han River whereas phytoplankton biomass and nutrient concentrations were high during spring at the upper regions in the Youngsan River. Phytoplankton biomass was the highest in the Asan Lake and nutrient concentrations were high at the upper region of the lake. In Nakdong River, phytoplankton biomass was high during winter and the biomass was slightly higher at upper region than at lower region. Long-term trends showed that total nitrogen and total phosphorus were mostly increased in the river systems. Implications of these results relevant to the water quality management for the river systems were also discussed.

Unsteady Flow Analysis in the Youngsan River Using Explicit and Implicit Finite Difference Methods (양해법과 음해법을 이용한 영산강에서의 부정류해석)

  • Choi, Sung-Uk;Yeo, Woon-Kwang;Choo, Cheol;Kim, Chang-Wan;O, Yu-Chang
    • Water for future
    • /
    • v.24 no.4
    • /
    • pp.49-58
    • /
    • 1991
  • Flood routing in the Youngsan River was performed for the flood event of July, 1989 by two finite difference methods. The Saint Venant eq., a kind of hyperbolic partial differential equation is employed as governing equation and the explicit scheme (Leap Frog) and implicit scheme (Preissmann) are used to discretize the GE. As for the external boundary conditions, discharge and tidal elevation are upstream and downstream BC, respectively and estuary dam is included in internal BC. Lateral inflows and upstream discharges are the hourly results from storage function method, At Naju station, a Relatively upstream points in this river, the outputs are interpreted as good ones by comparing two numerical results of FDMs with the observed data and the calibrated results by storage function method. and two computational results are compared at the other sites, from middle stream and downstream points, and thus are considered reliable. Therefore, we can conclude from this research that these numerical models are adaptable in simulating and forecasting the flood in natural channels in Korea as well as existing hydrologic models. And the study about optimal gate control at the flood time is expected as further study using these models.

  • PDF