• Title/Summary/Keyword: Younggyu

Search Result 45, Processing Time 0.022 seconds

Study on behavior of multilayer ceramic capacitor caused by piezoelectricity (압전효과에 의한 적층 세라믹 콘덴서의 거동 분석)

  • Park, No-Cheol;Ko, Byung-Han;Park, Young-Pil;Ahn, Younggyu
    • Transactions of the Society of Information Storage Systems
    • /
    • v.10 no.2
    • /
    • pp.61-64
    • /
    • 2014
  • Vibration and acoustic noise arise from the Multilayer Ceramic Capacitor (MLCC) because of the piezoelectric effect of dielectric substance which consists of $BaTiO_3$. However, the phenomenon is not analyzed clearly because the MLCC shows different behavior compare with ordinary piezoelectric substance like PZT. Thus, MLCC was tested under the several DC bias conditions and heat treatment effect was also tested and analyzed in this paper. From the test, MLCC shows not only piezoelectric effect but also another physical phenomenon like electrostriction. Also, it was verified that DC bias affect to the piezoelectric constant of MLCC.

The Effect of Liquid Height on Sonochemical Reactions in 74 kHz Sonoreactors (74 kHz 초음파 반응기에서 수위 변화에 따른 초음파 화학 반응의 변화)

  • Son, Younggyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.80-85
    • /
    • 2016
  • Acoustic cavitation can induce various sonochemical effects including pyrolysis and radical reactions and sonophysical effects including microjets and shockwave. In environmental engineering field, ultrasound technology using sonochemical effects can be useful for the removal and mineralization of recalcitrant trace pollutants in aqueous phase as one of emerging advanced oxidation processes (AOPs). In this study, the effect of liquid height, the distance from the transducer to the water surface, on sonochemical oxidation reactions was investigated using KI dosimetry. As the liquid height/volume increased (40~400 mm), the cavitation yield steadily increased even though the power density drastically decreased. It was found that the enhancement at higher liquid height conditions was due to the formation of standing wave field, where cavitation events could stably occur and a large amount of oxidizing radicals such as OH radicals could be continuously provided.

Structural Design on Joint Component of Composite Wing of WIG Craft

  • Lee, Younggyu;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.8 no.2
    • /
    • pp.1-3
    • /
    • 2021
  • This study proposed a specific preliminary structural design procedure of the main wing for a small scale WIG vehicle to meet the target weight of the system requirement. The high stiffness and strength Carbon-Epoxy material was used for lightness, and the foam sandwich type structure at the upper skin and the spar webs was adopted for improvement of structural stability. After structural design, wing joint part was designed. Through investigation on structural design result, design modification was performed. After design modification, even thought the designed wing weight was a little bit heavier than the target wing weight, the structural safety and stability of the final design feature was confirmed.

Experimental Study on Thermal and Mechanical Characteristics of Two Resin Composites Using the Co-Curing Process (동시 경화 제작기법을 적용한 이종 수지 복합재의 열적/기계적 특성에 관한 실험적 연구)

  • Yoon, Jin-Young;Choi, Jiduck;Park, Cheolyong;Kim, Younggyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.475-484
    • /
    • 2020
  • Individual curing process of each layer in two resin composites can be caused the separation between two layers. In this study, co-curing process for two resin composites is suggested to improve the inter-layer bonding. Glass fiber reinforced composites with phenolic and epoxy resins were manufactured by co-curing process, and several types of glass/phenolic composites were considered to confirm the application on two resin composites. Experiments for smoke resistance, scratch resistance and flexural strength were carried out to verify requirements corresponding to thermal and mechanical environments. It was validated that two resin composites with phenolic resin impregnated prepreg exhibits good thermal and mechanical characteristics, and it can serve as highly effective composite structures in aerospace and many industry areas.

Estimation of Ultrasonic Energy and Sonochemical Effects in Double-Bath-Type Systems and Heterogeneous Systems (이중 반응기 조건 및 비균일계 조건에서의 초음파 에너지 및 화학적 효과 평가)

  • Lee, Hyeon Jae;Son, Younggyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.5
    • /
    • pp.40-47
    • /
    • 2017
  • The effects of ultrasound in heterogeneous system were investigated in three kinds of ultrasonic systems including a bath-type system (System #1), a double-bath-type system (System #2), and a double-bath-type system partly filled with glass beads (System #3). The ultrasound energy and its attenuation were quantified using calorimetry and the sound pressure measurement method. The sonochemical effects mainly involved in radical oxidation reactions were quantified using KI dosimetry. It was found that ultrasound energy was significantly attenuated in System #2 and #3 due to the presence of solid materials such as a submerged stainless steel reactor and glass beads. However, in spite of low ultrasound energy status, sonochemical oxidation reactions occurred more violently due to the presence of glass beads in System #3. In addition, calorimetry was more adequate to estimate the total energy status of ultrasound in sonoreactors compared to the sound pressure measurement method.

Sonochemical and Sonophysical Effects in a Downward-Irradiation Sonoreactor (하향 초음파 조사 시스템에서의 초음파 화학적 및 물리적 효과 평가)

  • Kim, Seulgi;Son, Younggyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.3
    • /
    • pp.23-31
    • /
    • 2020
  • The performance of a downward-irradiation sonoreactor was investigated using calorimetry, KI dosimetry, luminol (Sonochemiluminescence, SCL) method, and aluminium foil erosion method as one of the basic steps for the optimal design of downward-irradiation sonoreactors. The applied frequency was 28 kHz and the input electrical power was 280 - 300 W. The liquid height, from the reactor bottom to the transducer module surface, ranged from 1λ (53.6 mm) to 2λ (107.1 mm). For various liquid heights, the magnitude of calorimetric power and the mass of cavitation-generated I3- ion varied significantly. It was found that the additional application of mechanical mixing resulted in higher sonochemical activity, especially in the cavitational active zone, which was induced by violent liquid flow in the reactor. In aluminium foil erosion tests, it was found that less ultrasound energy reached the bottom of the reactor due to the violent liquid flow and no significant sonophysical effect was observed for higher mixing rate conditions (100 and 200 rpm).

The Analysis of Acoustic Emission Spectra in a 36 kHz Sonoreactor (36kHz 초음파 반응기에서의 원주파수 및 파생주파수의 음압 분포 분석)

  • Son, Younggyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.128-134
    • /
    • 2016
  • Acoustic emission spectra was analyzed to investigate the distribution of sound pressure in a 36 kHz sonoreactor. The sound pressure of fundamental frequency (f: 36 kHz), harmonics (2f: 72 kHz, 3f: 108 kHz, 4f: 144 kHz, 5f: 180 kHz, 6f: 216 kHz), and subharmonics (1.5f: 54 kHz, 2.5f: 90 kHz, 3.5f: 126 kHz, 4.5f: 162 kHz, 5.5f: 198 kHz, 6.5f; 234 kHz) was measured at every 5 cm from the ultrasonic transducer using a hydrophone and a spectrum analyzer. It was revealed that the input power of ultrasound, the application of mechanical mixing, and the concentration of SDS affected the sound pressure distributions of the fundamental frequency and total detected frequencies frequencies significantly. Moreover a linear relationship was found between the average total sound pressure and the degree of sonochemical oxidation while there was no significant linear relationship between the average sound pressure of fundamental frequency and the degree of sonochemical oxidation.

Shape Design of Disk Seal in $SF_6$ Gas Safety Valve using Taguchi method (다구찌법을 이용한 $SF_6$가스 안전밸브용 디스크 시일 형상의 설계)

  • Cho Seunghyun;Kim Chungkyun;Kim Younggyu
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.237-240
    • /
    • 2004
  • Sulfur Hexafluoride, SF6 is widely used for leak detection and as a gaseous dielectric in transformers, condensers and circuit breakers. SF6 gas is also effective as a cleanser in the semiconductor industry. This paper presents a numerical study of the sealing force of disk type seal in SF6 gas safety valve. The sealing force on the disk seal is analyzed by the FEM method based on the Taguch's experimental design technique. Disk seals in SF6 gas safety valve are designed with 9 design models based on 3 different contact length, compressive ratio and gas pressure. The calculated results of Cauchy stress and strain showed that the sealing characteristics of Teflon PTFE is more effective compared to that of FKM(Viton), which is related to the stiffness of the materials. And also, the contact length of the disk seal is important design parameter for sealing the SF6 gas leakage in the safety valve.

  • PDF