• Title/Summary/Keyword: Young tomato plant

Search Result 252, Processing Time 0.021 seconds

Change in the Plant Temperature of Tomato by Fogging and Airflow in Plastic Greenhouse (포그분사 및 공기유동에 의한 온실재배 토마토의 엽온 변화)

  • Nam, Sang-Woon;Kim, Young-Shik;Seo, Dong-Uk
    • Journal of Bio-Environment Control
    • /
    • v.23 no.1
    • /
    • pp.11-18
    • /
    • 2014
  • To investigate the influence of surrounding environment on the plant temperature and examine the effect of plant temperature control by fogging and airflow, plant temperature of tomato, inside and outside air temperature and relative humidity, solar radiation and wind speed were measured and analyzed under various experimental conditions in plastic greenhouse with two-fluid fogging systems and air circulation fans. According to the analysis of plant temperature and the change of inside and outside air temperature in each condition, inside air temperature and plant temperature were significantly higher than outside air temperature in the control and shading condition. However, in the fogging condition, inside air temperature was lower or slightly higher than outside air temperature. It showed that plant temperature could be kept with the temperature similar to or lower than inside air temperature in fogging and airflow condition. To derive the relationship between surrounding environmental factor and plant temperature, we did multiple regression analysis. The optimum regression equation for the temperature difference between plant and air included solar radiation, wind speed and vapor pressure deficit and RMS error was $0.8^{\circ}C$. To investigate whether the fogging and airflow contribute to reduce high temperature stress of plant, photosynthetic rate of tomato leaf was measured under the experimental conditions. Photosynthetic rate was the highest when using both fogging and airflow, and then fogging, airflow and lastly the control. So, we could assume that fogging and airflow can make better effect of plant temperature control to reduce high temperature stress of plant which can increase photosynthetic rate. It showed that the temperature difference between plant and air was highly affected by surrounding environment. Also, we could estimate plant temperature by measuring the surrounding environment, and use it for environment control to reduce the high temperature stress of plant. In addition, by using fogging and airflow, we can decrease temperature difference between plant and air, increase photosynthetic rate, and make proper environment for plants. We could conclude that both fogging and airflow are effective to reduce the high temperature stress of plant.

Control of Late Blight of Tomato and Potato by Oilgochitosan (올리고키토산에 의한 토마토 역병과 감자 역병의 방제)

  • Cho, Yong-Ho;Choi, Gyung-Ja;Kim, Byung-Sup;Jang, Kyoung-Soo;Yoon, Mi-Young;Park, Myoung-Soo;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.17 no.2
    • /
    • pp.129-135
    • /
    • 2011
  • Chitosan is a linear polysaccharide composed of randomly distributed ${\ss}$-(1-4)-linked D-glucosamine and Nacetyl-D-glucosamine. There have been many reports on the induced systemic resistance and in vivo antifungal activities of higher molecular weight chitosans with molecular weights over 3,000 amu (atomatic mass unit), but there are few papers on in vivo antifungal activities of low molecular weight chitosans (oligochitosans) with molecular weights less than 3,000 amu. In our study, an oligochitosan sample (320.3,000 amu) showed a potent 1-day protective activity with control values more than 94% at concentrations of 500 and 1,000 ${\mu}g$/ml especially against tomato late blight caused by Phytophthora infestans under growth chamber conditions. It also displayed a moderate 1-day protective activity with control values of 67.89% at concentrations of 500 and 1,000 ${\mu}g$/ml against wheat leaf rust and red pepper anthracnose. On the other hand, it showed a 16-hr curative activity against red pepper anthracnose, but not against tomato late blight and wheat leaf rust. In field experiments, oligochitosan effectively suppressed the development of late blight on potato and tomato plants with control values of 72% and 48%, respectively. The results strongly indicate that oligochitosan can be used as an eco-friendly organic material for the control of late blight on tomato and potato plants.

Development of a Trial Product for Irrigation Management in Substrate Culture (고형배지경 급액관리 시작기 개발)

  • Kim, Sung-Eun;Sim, Sang-Youn;Lee, Sang-Don;Kim, Young-Shik
    • Journal of agriculture & life science
    • /
    • v.44 no.5
    • /
    • pp.129-135
    • /
    • 2010
  • This experiment was carried out to commercialize an irrigation control system by finding out problems and solving them in application of a nutrient supply system through this experiment. Its efficiency had been tested through hydroponic cultivation of tomato and cucumber using this system in the farmer's plastic house (1-2W, 20a : Yanggyo-ri, Oseong-myeon Gyeonggi-do) from November. 2006, too. In the first cultivation, tomato seeds (cultivar Coco, Takii Seed Co. Japan) were sowed on November 8, 2006, and transplanted on January 8, 2007. and then, in the second, cucumber (Chuichong, Nongwoo Seed Co.) were cultivated in the same plastic house (sowing date : June 27, transplanting date : July 13). In the third, another cucumber cultivar (Jo-woon, Dongbu-hannong Seed Co.) were cultivated (sowing date : September 5, transplanting date : September 23). All of seedlings were transplanted on perlite bag ($W340{\times}L1,200{\times}H150mm$, 40L). By using this system, 971 boxes (5 kg/box) of tomato were produced and sold, and then total income was 5,466 thousand won per 10a. On the second cultivation, total amount of cucumber production was 489 boxes (50 ea/box), and total income was 7,380 thousand won. On the third cultivation, total amount of production was 67 boxes (100 ea/box), and total income was 1,854 thousand won. On the other hand, this system saved irrigated water by 50% ($4,000{\rightarrow}2,000L/10a/day$) in tomato cultivation, and by 44%($4,500{\rightarrow}2,500L/10a/day$) in cucumber cultivation. It also saved cost of nutrients by 50% in tomato ($1,648{\rightarrow}824thousand\;won/10a$), and 44% in cucumber ($1,648{\rightarrow}725thousand\;won/10a$). Furthermore this irrigation system maintained moisture content in perlite bag stable during cultivation period. Therefore, this system was successfully applied on farmer's greenhouse without a problem and can be commercialized for farmers.

Mineral N, Macro Elements Uptake and Physiological Parameters in Tomato Plants Affected by Different Nitrate Levels

  • Sung, Jwa-Kyung;Lee, Su-Youn;Kang, Seong-Soo;Lee, Ye-Jin;Kim, Ro-Gyoung;Lee, Ju-Young;Jang, Byoung-Choon;Ha, Sang-Keun;Lee, Jong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.551-558
    • /
    • 2011
  • The aim of this study was to know whether leaf nitrate can be a substitute of total leaf N to justify plant N status and how nitrate influences macro elements uptake and physiological parameters of tomato plants under different nitrogen levels. Leaf nitrate content decreased in low N, while showed similar value with the control in high N, ranging from 55 to $70mg\;g^{-1}$. Differences in nitrate supply led to nitrate-dependent increases in macro elements, particularly cations, while gradual decrease in P. Physiological parameters, photosynthesis rates and antioxidants, greatly responded in N deficient conditions rather than high N, which didn't show any significant differences compared the control. Considering nitrogen forms and physiological parameters, total-N in tomato plants represented positive relation with growth (shoot dry weight), nitrate and $CO_2$ assimilation, whereas negative relation with lipid peroxidation.

CaM-5, a soybean calmodulin, is required for disease resistance against both a bacterial and fungal pathogen in tomato, Lycopersicum esculentum (대두 calmoduine유전자 SCaM-5를 발현하는 형질전환 토마토의 병 저항성 검정)

  • Lee, Hyo-Jung;Baek, Dong-Won;Lee, Ok-Sun;Lee, Ji-Young;Kim, Dong-Giun;Chung, Woo-Sik;Yun, Jae-Gil;Lee, Sin-Woo;Kwak, Sang-Soo;Nam, Jae-Seung;Kim, Doh-Hoon;Yun, Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.93-97
    • /
    • 2006
  • The calmodulin as a Ca$^{2+}$-binding protein mediates cellular Ca$^{2+}$ signals in response to a wide array of stimuli in higher eukaryotes. Plants produce numerous calmodulin isoforms that exhibit differential gene expression patterns and sense different Ca$^{2+}$ signals. SCaM-5 is a soybean calmodulin that is involved in plant defense signaling. Here, we constructed a SCaM-5 CDNA under control of CaMV 35S promoter and transformed it into tomato (Lycopersicon esculentum). The constitutive over-expression of SCaM-5 in tomato plants exhibited a high levels of pathogenesis-related (PR) gene expression, and conferred an enhanced resistance to two fungal pathogen (Phytophthora capsici, Fusarium oxysporum), and a bacterial pathogen, Pseudomonas syringae pv. tomato DC3000. Thus, this results collectively suggest that SCaM-5 plays an important role in plant defense of tomato.

Effects of Mechanical Stimulation and Chemical Treatments on Growth of Seedlings and Yield of Tomato (토마토 육묘 시 물리적 자극 및 약제 처리가 묘의 소질과 수량에 미치는 영향)

  • Choi, Young Hah;Rhee, Han Cheol;Park, Dong Kum;Kwon, Joon Kook;Lee, Jae Han
    • Horticultural Science & Technology
    • /
    • v.19 no.3
    • /
    • pp.320-324
    • /
    • 2001
  • This study was conducted to investigate the effects of mechanical stimulation and growth regulators known to control overgrowth in hot temperature tomato transplants on the seedling quality and the growth and yield after planting. Brushing and impedance were applied as mechanical stimulation, and diniconazole and hexaconazole as chemical growth regulator were used in various ways at different concentrations and treatment times. Diniconazole treatment regardless of concentration and treatment times reduced plant height, leaf area and fresh weight of young plant. Though treatments of high concentration and many times reduced the yield of tomato after planting, these of proper amount and proper times maintained the level of control. Hexaconazole treatment controlled less plant height of transplants than diniconazole, and its effect also didn't support continuously after planting. However, hexaconazole treatment reduced the yield due to little fruit number and malformed plants, and also delayed the harvesting time as compared to the control. Both brushing and impedance controlled plant height of transplants. However, impedance treatment reduced the yield due to malformed plants after planting, and also delayed the harvesting time, while brushing treatment didn't reduced growth and yield as compared to the control. From the above results, it was thought that proper application of brushing and diniconazole can control excessive overgrowth without reducing yield.

  • PDF

Enhancement of Biological Control of Botrytis cinerea on Cucumber by Foliar Sprays and Bed Potting Mixes of Trichoderma harzianum YC459 and Its Application on Tomato in the Greenhouse

  • Lee Sun-Kug;Sohn Hwang-Bae;Kim Geun-Gon;Chung Young-Ryun
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.283-288
    • /
    • 2006
  • Trichoderma harzianum YC459 (Th 459), isolated from sawdust compost, was effective in controlling cucumber and tomato gray mold caused by Botrytis cinerea under controlled and plastic film tunnel conditions. A water suspension of the wettable powder formulation of Th 459 significantly $(P\leq0.05)$ reduced the severity of cucumber gray mold by foliar spraying at all tested concentrations from $10^5\;to\;10^8$ colony forming unit (cfu)/ml in repeated experiments. The control efficacy was maintained at least seven days with the average control value of 70% in cucumber pot tests. Mixing one to eight grams of the granular formulation ($10^8cfu/g$ dry weight) of Th 459 into one liter nursery potting mix at seeding also significantly $(P\leq0.05)$ reduced the severity of cucumber gray mold by suppression of lesion formation three weeks after treatment. Application of mixing granular formulation at seeding in combination with foliar spraying during cultivation provided a more significant reduction $(P\leq0.05)$ of cucumber gray mold than granule mixing or leaf spray alone. The foliar spraying of the formulated wettable powder of Th 459 significantly $(P\leq0.05)$ reduced the infection of tomato fruits by B. cinerea as effective as the chemical fungicide, dichlofluanid, in three plastic film tunnel experiment trials. It is suggested that effective control of gray mold of cucumber and tomato can be provided by both treatment of Th 459 into potting mix and foliar spray through induction of systemic resistance and direct inhibition of the pathogen.

Effects of Foliar Application of Glycine Betaine on the Growth and Contents of Osmolyte in Tomato Seedling (Glycine betaine 엽면 처리가 토마토 유묘의 생육과 삼투조절물질 함량에 미치는 영향)

  • Kang, Nam-Jun;Kwon, Joon-Kook;Lee, Jae-Han;Park, Jin-Myeon;Rhee, Han-Chul;Choi, Young-Hah
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.390-395
    • /
    • 2006
  • Effects of exogenously foliar applied glycine betaine (GB) on the growth and contents of osmolyte in tomato seedling was investigated. Plants treated with exogenous glycine betaine induced better biomass production and plant height during chilling stress than the untreated plants. The total soluble sugar contents in GB foliar-applied plants lower than that of untreated plants 28 days after foliar application. Total water soluble protein contents in GB foliar-applied plants did not change 28 days after chilling stress. In untreated plant, it decreased rapidly in the beginning of chilling stress. Proline contents in untreated plants rapidly increased by the beginning of chilling stress, and then slightly decreased during the next 3 weeks. However proline contents in GB foliar-applied plants did not change during the 28 days chilling stress period. The results suggest that foliar application of GB is a effect methods to increase the chilling tolerance of tomato seedlings in protected cultivation system at low temperature season.

Reduction of Tomato spotted wilt virus on Table Tomatoes in Greenhouses by Soil Fumigation

  • Kim, Jin-Young;Cho, Jeom-Deog;Kim, Jeong-Soo;Hong, Soon-Sung;Lee, Jin-Gu;Choi, Gug-Seoun;Lim, Jae-Wook
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.151-156
    • /
    • 2009
  • Tomato spotted wilt virus (TSWV) has occurred on fields annually disease occurrence rates were 73.3% in 2005, 53.3% in 2006 and 41.6% in 2007 at Anyang area in Gyeonggi Province. Seasonal occurrence pattern of TSWV showed a dramatic increase from 8.7% in late May to 30.1 % in early June in 2007 at Anyang area, coincided with the high population of a thrip, Frank-liniella occidentalis at that time. The rate of viruliferous thrips with TSWV on lettuce and red pepper was 20.2% and 52.1%, respectively, in greenhouses. Dazomat, soil fumigation pesticide, reduced TSWV disease incidence drastically on table tomato as treatment the chemical into the soil with humidity in early spring in 2006 and 2007. Spraying insecticide periodically after treatment with Dazomat was more effective to control TSWV than spraying if on plants or applying into the soil of the insecticide during growing season. Control efficiency through treatments both of the soil fumigation and of spraying insecticide was significantly high with 85.3% in 2006 and 87.8% in 2007. Removing the potential vector from the soil of TSWV infested area can be an effective strategy for reducing TSWV disease.

Mycorrhizal Root Infection and Growth of Cucumber and Tomato Plants by the Inoculated with Glomus sp. In solid Medium Culture (균근균 Glomus sp. 접종에 따른 고형배지경 오이와 방울토마토의 균근 형성과 생육)

  • Cho, Ja-Yong;Kim, Young-Ju;Jin, Seo-Young;Kang, Sung-Gu;Kim, Hong-Lim;Sohn, Bo-Kyoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.5
    • /
    • pp.341-349
    • /
    • 2004
  • This study was conducted to compare the effects of arbuscular mycorrhizal fungi (AMF) on the growth and fruit yield of hydroponically grown cucumber and tomato plants in solid medium culture. Mycorrhizal fungus Glomus sp. was collected from plastic film house soils of cucumber and tomato and inoculated to the experimental crops at the time of seeding and transplanting. Root infection of cucumber and tomato plants by AMF was more significantly increased when the AMF was inoculated at seeding stage than at transplanting stage. In the infected roots of cucumber and tomato, mycorrhizal hyphae was easily observed but vesicle and arbuscule were rare. Overall plant growth was increased with AMF inoculation and the growth was higher when AMF was inoculated at seeding stage. Fresh weight of each fruit of cucumber and tomato and sugar content in tomato fruits were significantly increased with AMF inoculation at seeding stage. The AMF inoculation also increased fruit yields of cucumber and tomato.