• 제목/요약/키워드: You only look once

검색결과 124건 처리시간 0.033초

객체 검출을 위한 CNN과 YOLO 성능 비교 실험 (Comparison of CNN and YOLO for Object Detection)

  • 이용환;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제19권1호
    • /
    • pp.85-92
    • /
    • 2020
  • Object detection plays a critical role in the field of computer vision, and various researches have rapidly increased along with applying convolutional neural network and its modified structures since 2012. There are representative object detection algorithms, which are convolutional neural networks and YOLO. This paper presents two representative algorithm series, based on CNN and YOLO which solves the problem of CNN bounding box. We compare the performance of algorithm series in terms of accuracy, speed and cost. Compared with the latest advanced solution, YOLO v3 achieves a good trade-off between speed and accuracy.

저고도 무인항공기를 이용한 보행자 추적에 관한 연구 (A Study on Pedestrians Tracking using Low Altitude UAV)

  • 서창진
    • 전기학회논문지P
    • /
    • 제67권4호
    • /
    • pp.227-232
    • /
    • 2018
  • In this paper, we propose a faster object detection and tracking method using Deep Learning, UAV(unmanned aerial vehicle), Kalman filter and YOLO(You Only Look Once)v3 algorithms. The performance of the object tracking system is decided by the performance and the accuracy of object detecting and tracking algorithms. So we applied to the YOLOv3 algorithm which is the best detection algorithm now at our proposed detecting system and also used the Kalman Filter algorithm that uses a variable detection area as the tracking system. In the experiment result, we could find the proposed system is an excellent result more than a fixed area detection system.

PCB 검사를 위한 YOLO 네트워크 기반의 PCB 부품 분류 알고리즘 (PCB Component Classification Algorithm Based on YOLO Network for PCB Inspection)

  • 윤형조;이준재
    • 한국멀티미디어학회논문지
    • /
    • 제24권8호
    • /
    • pp.988-999
    • /
    • 2021
  • AOI (Automatic Optical Inspection) of PCB (Printed Circuit Board) is a very important step to guarantee the product performance. The process of registering components called teaching mode is first perform, and AOI is then carried out in a testing mode that checks defects, such as recognizing and comparing the component mounted on the PCB to the stored components. Since most of registration of the components on the PCB is done manually, it takes a lot of time and there are many problems caused by mistakes or misjudgement. In this paper, A components classifier is proposed using YOLO (You Only Look Once) v2's object detection model that can automatically register components in teaching modes to reduce dramatically time and mistakes. The network of YOLO is modified to classify small objects, and the number of anchor boxes was increased from 9 to 15 to classify various types and sizes. Experimental results show that the proposed method has a good performance with 99.86% accuracy.

심층신경망을 이용한 스마트 양식장용 어류 크기 자동 측정 시스템 (Automatic Fish Size Measurement System for Smart Fish Farm Using a Deep Neural Network)

  • 이윤호;전주현;주문갑
    • 대한임베디드공학회논문지
    • /
    • 제17권3호
    • /
    • pp.177-183
    • /
    • 2022
  • To measure the size and weight of the fish, we developed an automatic fish size measurement system using a deep neural network, where the YOLO (You Only Look Once)v3 model was used. To detect fish, an IP camera with infrared function was installed over the fish pool to acquire image data and used as input data for the deep neural network. Using the bounding box information generated as a result of detecting the fish and the structure for which the actual length is known, the size of the fish can be obtained. A GUI (Graphical User Interface) program was implemented using LabVIEW and RTSP (Real-Time Streaming protocol). The automatic fish size measurement system shows the results and stores them in a database for future work.

YOLO 네트워크를 이용한 단자 구분 (Classification of terminal using YOLO network)

  • 정다운;정성훈;김재윤;정지훈;공경보
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 추계학술대회
    • /
    • pp.183-186
    • /
    • 2022
  • 최근 인공지능 기반 객체 탐지 기술이 발전함에 따라 영상 감시, 얼굴 인식, 로봇 제어, IoT, 자율주행, 제조업, 보안 등 다양한 분야에 활용되고 있다. 이에 본 논문은 발전된 객체 탐지 알고리즘을 이용하여 비전문가에겐 생소한 컴퓨터나 전기 장치 등의 '단자(terminal)' 모양을 구별하는 방법을 제안한다. 이를 위해 객체 탐지 프로그램인 You Only Look Once (YOLO) 알고리즘을 이용하여 입력한 단자들의 모양을 검출하는 알고리즘을 구성하였다. 일상에서 쉽게 볼 수 있는 단자들의 이미지(VGA, DVI, HDMI, DP, USB-A, USB-C)를 라벨링하여 데이터셋을 구축하였고, YOLOv4와 YOLOv5 두 버전의 알고리즘을 사용하여 성능을 검증하였다. 실험 결과 mean Average Precision(mAP) 기준 최대 92.9%의 정확도를 얻을 수 있었다. 전기 장치에 따라 단자의 모양이 다양하고, 그 종류 또한 많기 때문에 본 연구가 방송 기술 등의 여러 분야에 응용될 것으로 기대된다.

  • PDF

다중 사용자 포즈 추정 및 트래킹 알고리즘의 구현 (Development of Multi-Person Pose-Estimation and Tracking Algorithm)

  • 김승렬;안소윤;서영호
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 추계학술대회
    • /
    • pp.215-217
    • /
    • 2021
  • 본 논문은 3D 공간에서 사용자를 추출한 뒤, 체적 정보 분석을 통한 3D 스켈레톤(skeleton) 분석 과정을 통해 정확도 높은 다수 사용자의 위치 추적 기술에 대해 연구하였다. 이를 위하여 YOLO(You Only Look Once)를 활용하여 실시간으로 객체를 검출(Real-Time Object Detection)한 뒤 Google의 Mediapipe를 활용해 스켈레톤 추출, 스켈레톤 정규화(normalization)를 통한 스켈레톤의 크기 및 상대적 비율 계산, RGB 영상 스케일링(Scaling) 후 주요 마디 인접 영역의 RGB 색상 정보를 추출하는 방법을 통해 정확도가 개선된 높은 성능의 다중 사용자 추적 기술을 연구하였다.

  • PDF

반려동물 행동 분석 기반 이상행동 예측 시스템 (Abnormal behavior prediction system based on companion animal behavior analysis)

  • 신민찬;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.487-490
    • /
    • 2021
  • 최근 반려동물 관련 산업이 증가함에 따라 반려동물의 행동을 분석하는 연구가 진행되고 있다. 이를 바탕으로 본 논문에서는 반려동물 행동 분석을 통한 이상행동 예측 시스템을 제안한다. 이 시스템은 CCTV로부터 반려동물의 영상 데이터를 수집하고, YOLOv4(You Only Look Once version 4)를 통해 반려동물의 객체를 탐지한다. 행동을 분석하기 위해 탐지된 반려동물 객체를 DeepLabCut 딥러닝 알고리즘을 사용하여 관절 좌표 정보를 추출한다. 추출된 관절 좌표와 반려동물의 일반적인 행동을 매칭하여 이상행동을 예측하기 위한 DNN(Deep Neural Networks)의 입력 데이터로써 사용된다. 위 과정을 통해 반려동물의 전체적인 행동을 분석하여 이상행동을 예측한다. 이 시스템을 통해 반려동물의 행동을 분석하고 이상행동을 예측함으로써 반려동물 의료 관련 사업에도 적용될 수 있을 것이다.

자율주행 시대를 대비한 긴급 교통 수신호 인식 시스템 (Emergency Traffic Hand Sign Recognition System for Autonomous Driving)

  • 곽영태;최대원;송민지
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제62차 하계학술대회논문집 28권2호
    • /
    • pp.677-678
    • /
    • 2020
  • 본 연구는 자율주행 시대에 자동차의 외부통제를 가능하게 하는데 목적이 있다. 자율주행 자동차의 외부통제를 하기 위해 교통경찰 수신호를 사용한다. 교통이라는 특별한 상황을 고려하여 실시간 객체 검출이 가능한 YOLO모델을 사용하였고, 수신호 데이터 학습을 위해 Data Argumentation 기법을 사용하여 데이터를 확보한 후 이를 바탕으로 YOLO모델을 학습하였다. 학습된 YOLO모델을 이용하여 교통의 흐름에서 교통 통제자를 실시간으로 검출하였다. 이후 검출된 객체를 이용하여 객체 확인 알고리즘과 수신호 의미파악 알고리즘을 사용하여 수신호의 의미를 파악하고 이를 사용자에게 전달한다. 이와 같은 시스템을 통해 자율주행 자동차에 돌발 상황 발생 시 보다 정확하고 빠르게 교통의 흐름을 정상화 할 수 있는 장점이 있다.

  • PDF

물체 기반 비디오 압축 (Object based Video Compression)

  • 김명준;이영렬
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.550-552
    • /
    • 2020
  • 본 논문에서는 YOLO(You Only Look Once) 사물 인식 알고리즘을 활용하여 영상 압축에 적용한다. YOLO 는 물체의 일반화된 특징을 학습한 뉴럴 네트워크이다. 영상을 압축하는 동시에 YOLO 를 활용하여, 영상 내의 사물을 인식한다. 사물이 인식된 영역을 영상 압축을 할 때, 더 구체적으로 예측을 하는 방법을 제안한다. 본 논문에서 제안하는 방법은 QP(Quantization Parameter)를 조절하여, YOLO 로부터 인식된 사물을 더 정교하게 사물을 부호화/복호화한다. VVC(Versatile Video Coding) 기반에서 Rate-Control 를 사용하며, QP 를 조절한다. QP 는 CTU-Level 단위로 조절하며, 사물이 포함된 CTU 는 더 낮은 QP 를 바탕으로 효율적인 화질을 가져온다. 본 논문에서 제안하는 방법은 VVC 기반으로 한 Rate-Control 보다 주관적 화질이 선명한 것으로 보인다.

  • PDF

재활용 마크 자동 인식 및 분리배출 방법 제안 챗봇 (Automatic recognition of recycling marks and chatbot for proposing recycling waste disposal)

  • 임예빈;김현희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.542-543
    • /
    • 2023
  • 최근 일회용품의 사용 증가 및 재질과 종류가 다양해짐에 따라, 올바른 분리배출 방법 공유 필요성이 대두되고 있다. 본 논문에서는 실시간 물체 인식 알고리즘인 YOLOv7 (You Only Look Once)를 이용하여 재활용 마크를 자동으로 분류하고 그에 따른 올바른 분리배출을 알려주는 시스템을 구현했다. 그 결과, mAP값이 90%로 좋은 객체 검출률을 보였다. 또한, 카카오톡 챗봇 API를 이용하여 올바른 분리배출 방법을 공유하는 서비스를 제공하며 사용자 접근성을 높여 많은 사람이 쉽게 사용할 수 있도록 구현했다.