• Title/Summary/Keyword: Yolo-Cnn

Search Result 72, Processing Time 0.025 seconds

Assessment of the Object Detection Ability of Interproximal Caries on Primary Teeth in Periapical Radiographs Using Deep Learning Algorithms (유치의 치근단 방사선 사진에서 딥 러닝 알고리즘을 이용한 모델의 인접면 우식증 객체 탐지 능력의 평가)

  • Hongju Jeon;Seonmi Kim;Namki Choi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.50 no.3
    • /
    • pp.263-276
    • /
    • 2023
  • The purpose of this study was to evaluate the performance of a model using You Only Look Once (YOLO) for object detection of proximal caries in periapical radiographs of children. A total of 2016 periapical radiographs in primary dentition were selected from the M6 database as a learning material group, of which 1143 were labeled as proximal caries by an experienced dentist using an annotation tool. After converting the annotations into a training dataset, YOLO was trained on the dataset using a single convolutional neural network (CNN) model. Accuracy, recall, specificity, precision, negative predictive value (NPV), F1-score, Precision-Recall curve, and AP (area under curve) were calculated for evaluation of the object detection model's performance in the 187 test datasets. The results showed that the CNN-based object detection model performed well in detecting proximal caries, with a diagnostic accuracy of 0.95, a recall of 0.94, a specificity of 0.97, a precision of 0.82, a NPV of 0.96, and an F1-score of 0.81. The AP was 0.83. This model could be a valuable tool for dentists in detecting carious lesions in periapical radiographs.

Car detection area segmentation using deep learning system

  • Dong-Jin Kwon;Sang-hoon Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.182-189
    • /
    • 2023
  • A recently research, object detection and segmentation have emerged as crucial technologies widely utilized in various fields such as autonomous driving systems, surveillance and image editing. This paper proposes a program that utilizes the QT framework to perform real-time object detection and precise instance segmentation by integrating YOLO(You Only Look Once) and Mask R CNN. This system provides users with a diverse image editing environment, offering features such as selecting specific modes, drawing masks, inspecting detailed image information and employing various image processing techniques, including those based on deep learning. The program advantage the efficiency of YOLO to enable fast and accurate object detection, providing information about bounding boxes. Additionally, it performs precise segmentation using the functionalities of Mask R CNN, allowing users to accurately distinguish and edit objects within images. The QT interface ensures an intuitive and user-friendly environment for program control and enhancing accessibility. Through experiments and evaluations, our proposed system has been demonstrated to be effective in various scenarios. This program provides convenience and powerful image processing and editing capabilities to both beginners and experts, smoothly integrating computer vision technology. This paper contributes to the growth of the computer vision application field and showing the potential to integrate various image processing algorithms on a user-friendly platform

A Study on Vehicle Number Recognition Technology in the Side Using Slope Correction Algorithm (기울기 보정 알고리즘을 이용한 측면에서의 차량 번호 인식 기술 연구)

  • Lee, Jaebeom;Jang, Jongwook;Jang, Sungjin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.465-468
    • /
    • 2022
  • The incidence of traffic accidents is increasing every year, and Korea is among the top OECD countries. In order to improve this, various road traffic laws are being implemented, and various traffic control methods using equipment such as unmanned speed cameras and traffic control cameras are being applied. However, as drivers avoid crackdowns by detecting the location of traffic control cameras in advance through navigation, a mobile crackdown system that can be cracked down is needed, and research is needed to increase the recognition rate of vehicle license plates on the side of the road for accurate crackdown. This paper proposes a method to improve the vehicle number recognition rate on the road side by applying a gradient correction algorithm using image processing. In addition, custom data learning was conducted using a CNN-based YOLO algorithm to improve character recognition accuracy. It is expected that the algorithm can be used for mobile traffic control cameras without restrictions on the installation location.

  • PDF

Web Service Platform for Optimal Quantization of CNN Models (CNN 모델의 최적 양자화를 위한 웹 서비스 플랫폼)

  • Roh, Jaewon;Lim, Chaemin;Cho, Sang-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.151-156
    • /
    • 2021
  • Low-end IoT devices do not have enough computation and memory resources for DNN learning and inference. Integer quantization of real-type neural network models can reduce model size, hardware computational burden, and power consumption. This paper describes the design and implementation of a web-based quantization platform for CNN deep learning accelerator chips. In the web service platform, we implemented visualization of the model through a convenient UI, analysis of each step of inference, and detailed editing of the model. Additionally, a data augmentation function and a management function of files that store models and inference intermediate results are provided. The implemented functions were verified using three YOLO models.

Object Recognition and Pose Estimation Based on Deep Learning for Visual Servoing (비주얼 서보잉을 위한 딥러닝 기반 물체 인식 및 자세 추정)

  • Cho, Jaemin;Kang, Sang Seung;Kim, Kye Kyung
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Recently, smart factories have attracted much attention as a result of the 4th Industrial Revolution. Existing factory automation technologies are generally designed for simple repetition without using vision sensors. Even small object assemblies are still dependent on manual work. To satisfy the needs for replacing the existing system with new technology such as bin picking and visual servoing, precision and real-time application should be core. Therefore in our work we focused on the core elements by using deep learning algorithm to detect and classify the target object for real-time and analyzing the object features. We chose YOLO CNN which is capable of real-time working and combining the two tasks as mentioned above though there are lots of good deep learning algorithms such as Mask R-CNN and Fast R-CNN. Then through the line and inside features extracted from target object, we can obtain final outline and estimate object posture.

FGRS(Fish Growth Regression System), Which predicts the growth of fish (물고기의 성장도를 예측하는 FGRS(Fish Growth Regression System))

  • Sung-Kwon Won;Yong-Bo Sim;Su-Rak Son;Yi-Na Jung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.347-353
    • /
    • 2023
  • Measuring the growth of fish in fish farms still uses a laborious method. This method requires a lot of labor and causes stress to the fish, which has a negative impact on mortality. To solve this problem, we propose the Fish Growth Regression System (FGRS), a system to automate the growth of fish. FGRS consists of two modules. The first is a module that detects fish based on Yolo v8, and the second consists of a module that predicts the growth of fish using fish image data and a CNN-based neural network model. As a result of the simulation, the average prediction error before learning was 134.2 days, but after learning, the average error decreased to 39.8 days. It is expected that the system proposed in this paper can be used to predict the growing date and use the growth prediction of fish to contribute to automation in fish farms, resulting in a significant reduction in labor and cost savings.

Implementation of a Classification System for Dog Behaviors using YOLI-based Object Detection and a Node.js Server (YOLO 기반 개체 검출과 Node.js 서버를 이용한 반려견 행동 분류 시스템 구현)

  • Jo, Yong-Hwa;Lee, Hyuek-Jae;Kim, Young-Hun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.1
    • /
    • pp.29-37
    • /
    • 2020
  • This paper implements a method of extracting an object about a dog through real-time image analysis and classifying dog behaviors from the extracted images. The Darknet YOLO was used to detect dog objects, and the Teachable Machine provided by Google was used to classify behavior patterns from the extracted images. The trained Teachable Machine is saved in Google Drive and can be used by ml5.js implemented on a node.js server. By implementing an interactive web server using a socket.io module on the node.js server, the classified results are transmitted to the user's smart phone or PC in real time so that it can be checked anytime, anywhere.

Implementation of an alarm system with AI image processing to detect whether a helmet is worn or not and a fall accident (헬멧 착용 여부 및 쓰러짐 사고 감지를 위한 AI 영상처리와 알람 시스템의 구현)

  • Yong-Hwa Jo;Hyuek-Jae Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.150-159
    • /
    • 2022
  • This paper presents an implementation of detecting whether a helmet is worn and there is a fall accident through individual image analysis in real-time from extracting the image objects of several workers active in the industrial field. In order to detect image objects of workers, YOLO, a deep learning-based computer vision model, was used, and for whether a helmet is worn or not, the extracted images with 5,000 different helmet learning data images were applied. For whether a fall accident occurred, the position of the head was checked using the Pose real-time body tracking algorithm of Mediapipe, and the movement speed was calculated to determine whether the person fell. In addition, to give reliability to the result of a falling accident, a method to infer the posture of an object by obtaining the size of YOLO's bounding box was proposed and implemented. Finally, Telegram API Bot and Firebase DB server were implemented for notification service to administrators.

A method based on Multi-Convolution layers Joint and Generative Adversarial Networks for Vehicle Detection

  • Han, Guang;Su, Jinpeng;Zhang, Chengwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1795-1811
    • /
    • 2019
  • In order to achieve rapid and accurate detection of vehicle objects in complex traffic conditions, we propose a novel vehicle detection method. Firstly, more contextual and small-object vehicle information can be obtained by our Joint Feature Network (JFN). Secondly, our Evolved Region Proposal Network (EPRN) generates initial anchor boxes by adding an improved version of the region proposal network in this network, and at the same time filters out a large number of false vehicle boxes by soft-Non Maximum Suppression (NMS). Then, our Mask Network (MaskN) generates an example that includes the vehicle occlusion, the generator and discriminator can learn from each other in order to further improve the vehicle object detection capability. Finally, these candidate vehicle detection boxes are optimized to obtain the final vehicle detection boxes by the Fine-Tuning Network(FTN). Through the evaluation experiment on the DETRAC benchmark dataset, we find that in terms of mAP, our method exceeds Faster-RCNN by 11.15%, YOLO by 11.88%, and EB by 1.64%. Besides, our algorithm also has achieved top2 comaring with MS-CNN, YOLO-v3, RefineNet, RetinaNet, Faster-rcnn, DSSD and YOLO-v2 of vehicle category in KITTI dataset.

A Study on Fruit Quality Identification Using YOLO V2 Algorithm

  • Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.190-195
    • /
    • 2021
  • Currently, one of the fields leading the 4th industrial revolution is the image recognition field of artificial intelligence, which is showing good results in many fields. In this paper, using is a YOLO V2 model, which is one of the image recognition models, we intend to classify and select into three types according to the characteristics of fruits. To this end, it was designed to proceed the number of iterations of learning 9000 counts based on 640 mandarin image data of 3 classes. For model evaluation, normal, rotten, and unripe mandarin oranges were used based on images. We as a result of the experiment, the accuracy of the learning model was different depending on the number of learning. Normal mandarin oranges showed the highest at 60.5% in 9000 repetition learning, and unripe mandarin oranges also showed the highest at 61.8% in 9000 repetition learning. Lastly, rotten tangerines showed the highest accuracy at 86.0% in 7000 iterations. It will be very helpful if the results of this study are used for fruit farms in rural areas where labor is scarce.