• Title/Summary/Keyword: Yoke tube

Search Result 15, Processing Time 0.027 seconds

Control of Convergence for Deflection Yoke Using Neuro-Fuzzy Model (뉴로 퍼지 모델을 이용한 편향요크의 RGB색 일치에 대한 제어)

  • 정병묵;임윤규;정창욱
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.19-27
    • /
    • 1998
  • Color Display Tube (CDT) used in computer monitors, consists of many components. Deflection Yoke(DY) among them supplies the vertical and horizontal magnetic fields so that the spatial trajectories of electron beams are deflected according to the synchronization signals. If the magnetic fields are not correctly formed, there will be color blurring or blooming by a mis-convergence of each beam and the color image on screen may not be clear. Therefore, in the manufacture of DY. its quality is strictly examined to get the desired convergence and the occurred mis-convergence can be cured by sticking ferrite sheets on the inner part of DY. However, because it needs expert's knowledge and experience to find the proper position of the sheet, this article introduces an intelligent controller that the knowledge-base represented by a neuro-fuzzy model is used to find the optimal position of the ferrite sheet for the convergence.

  • PDF

Integer Programming Approach to the Convergence Adjustment on Color Display Tube

  • Park, Sungsoo;Kang, Donghan;Lee, Hyohyung;Hong, Cheol-Kee
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.1
    • /
    • pp.63-70
    • /
    • 2004
  • In this paper, we consider the adjustment of convergence on Color Display Tube (CDT). Convergence is a measure of how well the red, green and blue beams are physically aligned with each other to strike the same area on the screen. When misconvergence (convergence error) occurs, one way of compensating it is to attach several ferrite sheets on the inner part of Deflection Yoke (DY). We suggest an optimization model of misconvergence compensation process and report test results for 81 DY samples. As a result, more than 90% of the samples could be made to satisfy the required convergence criteria.

Rule Generation Adust Convergence for Deflection Yoke Using Rough Set Theory (러프 집합 이론을 이용한 편향요크의 컴커젼수 조정을 위한 규칙생성)

  • 방원철;변증남;변명현
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.218-224
    • /
    • 1998
  • 본 논문에서는 컬러 모니터용 전자관(CDT; Color Display Tube)의 편향 요크(DY; Deflection Yoke)의 제조 공정상 오차가 발생시키는 컨버전스의 오차를 보정하기 위하여 붙이는 페라이트 박판(Ferrite Sheet)의 위치를 결정하는 규칙을 생성하는 박판을 붙여야 하는지 판단한다. 이를 러프 집합 이론을 이용하여 컨버전스 값을 조건부 속성으로, 페라이트 박판의 위치를 판단부 속성으로 하여 판단 테이블을 만들고 이때 발생하는 몇 가지 문제를 해결하여 최소화된 규칙을 찾아내는 방안을 제안한다.

  • PDF

A Three-dimensional Magnetic Field Mapping System for Deflection Yoke of Cathode-Ray Tube

  • Park, K.H.;Yoon, M.;Lee, S.M.;Joo, H.D.;Lee, S.D.;Yang, W.Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.868-871
    • /
    • 2002
  • In this paper, we introduce an efficient three-dimensional magnetic field mapping system for a Deflection Yoke (DY) in Cathode-Ray Tube (CRT). A three-axis Hall probe mounted in a small cylindrical bar and three stepping motors placed in a nonmagnetic frame are utilized for the mapping. Prior to the mapping starts, the inner contour of DY is measured by a laser sensor to make a look-up table for inner shape of DY. Three-axis magnetic fields are then digitized by a three-dimensional Hall probe. The results of the mapping can be transformed to various output formats such as multipole harmonics of magnetic fields. Field shape in one, two and three-dimensional spaces can also be displayed. In this paper, we present the features of this mapping device and show some analysis results.

  • PDF

Yoke Tube Crack Inspection by Using Acoustic Resonance Spectral Analysis (음향 공진 스펙트럼 분석을 통한 요크 튜브 크랙 검사)

  • Yeom, Woo-Jung;Hong, Yeon-Chan;Kim, Jin-Young;Kang, Joonhee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.108-114
    • /
    • 2018
  • Due to the development of nondestructive testing techniques, methods of inspecting cracks in mechanical parts have drawn attentions. Among various non-destructive testing methods the acoustic resonance method which analyzes the natural frequencies has been developed into a technique suitable for the prompt judgements of the existence of the defects in the mechanical parts. In this study, we investigated the crack inspection technique to examine the cracks in the yoke tubes by using the acoustic resonance method and realized the system to quickly detect the cracks. A 24bit ADC circuit and an MCU were installed for the smooth data collection, and a TCP / IP communication interface was configured for the data communication with PC. We used a microphone as a sensor measuring the vibrations. We constructed an analysis software to obtain the frequency spectra of the vibrations, to find the existence of the cracks, and to feedback to the user. Tests were conducted using the yoke tubes manufactured in the real industrial field. The tests were successfully conducted to distinguish the good products from the defective (cracked) products and confirmed that they can be employed in the actual industrial field.

A Three-dimensional Magnetic Field Mapping System for Deflection Yoke of Cathode-Ray Tube

  • Park, K.H.;Yoon, M.;Kim, D.E.;Lee, S.M.;Joo, H.D.;Lee, S.D.;Yang, W.Y.
    • Journal of Information Display
    • /
    • v.3 no.4
    • /
    • pp.19-22
    • /
    • 2002
  • In this paper, we introduce an efficient three-dimensional magnetic field mapping system for a Deflection Yoke (DY) in Cathode-Ray Tube (CRT). A three-axis Hall probe mounted in a small cylindrical bar and three-stepping motors placed in a non-magnetic frame were utilized for the mapping. Prior to the mapping starts, the inner contour of DY was measured by a laser sensor to make a look-up table for inner shape of DY. Three-axis magnetic fields are then digitized by a three-dimensional Hall probe. The results of the mapping can be transformed into various output formats such as multi pole harmonics of magnetic fields. Field shape in one, two and three- dimensional spaces can also be displayed. In this paper, we present the features of this mapping device and some analysis results.

Calculation of the Reactance for a Magnetic Phase Created in a Steam Generator Tube Material

  • Ryu, Kwon-Sang;Jung, Jae-Kap;Son, Derac;Park, Duck-Gun
    • Journal of Magnetics
    • /
    • v.15 no.2
    • /
    • pp.70-73
    • /
    • 2010
  • A magnetic phase is partly produced in a steam generator tube due to stress and heat, because steam generator tubes are exposed to high temperature, high pressure and radioactivity conditions. This adversely affects the safety of steam generator tubes. However, it is difficult to detect it using conventional eddy current methods. Therefore, a new type of probe is needed to separate the signals from the defects and magnetic phases. In this study, a new U-type yoke, which contained two types of coils, a magnetizing coil and detecting coil, was designed. In addition, the signal induced by the magnetic phase and defect in an Inconel 600 plate were simulated.

Magnetic Field Simulation for Circumferential Magnetic Phase Produced in Steam Generator Tube

  • Ryu, Kwon-Sang;Son, Derac;Park, Duck-Gun;Jung, Jae-Kap
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.88-91
    • /
    • 2011
  • Steam generator tubes (SGTs) in nuclear power plants (NPPs) are a boundary between the primary side generating heat by nuclear fission and the secondary side generating electric power by a turbine. The water inside the SGT is high temperature and high pressure. Therefore, defects and magnetic phases (MPs) are partly produced in non-magnetic SGT by high stresses and temperatures. This causes trouble regarding the safety of SGTs but it is difficult to detect the MP using the conventional eddy current technique (ECT). In particular, a circumferential defect (CD) and circumferential magnetic phase (CMP) cannot detected by ECT. Consequently, a new method is needed to detect CDs and CMPs in SGT. A new U-type yoke with two types of coils was designed and the reactance signal by the CMPs and CDs in the SGT material was simulated.

Development of the Integrated Information System for 3D Product Design/RP/CAE/3D Mold Design/Tooling (3차원 설계/RP/CAE/3차원 금형설계/제작 정보일원화시스템 개발)

  • 윤정호;전형환;안상훈;조명철
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.35-43
    • /
    • 1997
  • Concurrent Engineering is one of the methods which are used for the rapid product development. One of the important features in Concurrent Egineering is that the development process is to be parallel and the organization should be cross-functional. In order that the process be parallel and that the organization be cross-functional, an integrated information system such as PDM (Product Data Management) is required. Although the integrated data base is constructed, it could be meaningless if the application softwares were not inter-operable. This study shows an example of intergrated information system from three-dimensional product design to mold design and tooling for the development of Deflection Yoke(DY) which is one of the important parts of Cathode Ray Tube(CRT). A three-dimensional product design software, which is based on a commercial code, has been developed by ourselves. Selective Laser Sintering(SLS), which is one of the rapid prototyping techniques, has been used in this study. Mold design has been done by the three-dimensional way. A newly developed method of mold tooling, which is called Quick Die Manufacturing(QDM), has been introduced.

  • PDF

Boundary Element Analysis of Magnetic Shielding Effects of Shield Cup in Electron Gun (경계요소법을 이용한 전자총 Shield Cup의 자기차폐 특성해석)

  • Go, Chang-Seop;Jeong, Gwan-Sik;Han, Song-Yeop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.5
    • /
    • pp.291-296
    • /
    • 2000
  • Recently large size color TV and computer monitor are very popular and a lot techniques are being developed to get a high quality picture on the screen through reducing the convergence error among the red, green and blue beams and achieving a high focusing. One of the techniques is considering the mutual effects of the components of the Brown tube. The magnetic deflection yoke, especially, stands immediately next to the electron gun and generates the leakage magnetic fields at the electron gun which affects the trajectories of the electron beams inside the gun. Hence a shield cup made of thin conducting plate is located at the end of electron gun in order to shield the leakage flux from the deflection yoke. Since the red, green and blue beams are placed unsymmetrically the shielding effects of the shield cup on the beams are not same and eddy current controller, made of thin conducting plate, is auxiliary placed inside the shield cup. In this paper a transient magnetic field analysis algorithm is developed using boundary element method, and applied to the analysis of the shielding effects of the eddy current controller of shield cup in an electron gun.

  • PDF