• Title/Summary/Keyword: Yielding Criteria

Search Result 64, Processing Time 0.025 seconds

The elastic deflection and ultimate bearing capacity of cracked eccentric thin-walled columns

  • Zhou, L.;Huang, Y.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.401-411
    • /
    • 2005
  • The influence of cracks on the elastic deflection and ultimate bearing capacity of eccentric thin-walled columns with both ends pinned was studied in this paper. First, a method was developed and applied to determine the elastic deflection of the eccentric thin-walled columns containing some model-I cracks. A trigonometric series solution of the elastic deflection equation was obtained by the Rayleigh-Ritz energy method. Compared with the solution presented in Okamura (1981), this solution meets the needs of compatibility of deformation and is useful for thin-walled columns. Second, a two-criteria approach to determine the stability factor ${\varphi}$ has been suggested and its analytical formula has been derived. Finally, as an example, box columns with a center through-wall crack were analyzed and calculated. The effects of cracks on both the maximum deflection and the stability coefficient ${\varphi}$ for various crack lengths or eccentricities were illustrated and discussed. The analytical and numerical results of tests on the columns show that the deflection increment caused by the cracks increases with increased crack length or eccentricity, and the critical transition crack length from yielding failure to fracture failure ${\xi}_c$ is found to decrease with an increase of the slenderness ratio or eccentricity.

3D finite element simulation of human proximal femoral fracture under quasi-static load

  • Hambli, Ridha
    • Advances in biomechanics and applications
    • /
    • v.1 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • In this paper, a simple and accurate finite element model coupled to quasi-brittle damage law able to describe the multiple cracks initiation and their progressive propagation is developed in order to predict the complete force-displacement curve and the fracture pattern of human proximal femur under quasi-static load. The motivation of this work was to propose a simple and practical FE model with a good compromise between complexity and accuracy of the simulation considering a limited number of model parameters that can predict proximal femur fracture more accurately and physically than the fracture criteria based models. Different damage laws for cortical and trabecular bone are proposed based on experimental results to describe the inelastic damage accumulation under the excessive load. When the damage parameter reaches its critical value inside an element of the mesh, its stiffness matrix is set to zero leading to the redistribution of the stress state in the vicinity of the fractured zone (crack initiation). Once a crack is initiated, the propagation direction is simulated by the propagation of the broken elements of the mesh. To illustrate the potential of the proposed approach, the left femur of a male (age 61) previously investigated by Keyak and Falkinstein, 2003 (Model B: male, age 61) was simulated till complete fracture under one-legged stance quasi-static load. The proposed finite element model leads to more realistic and precise results concerning the shape of the force-displacement curve (yielding and fracturing) and the profile of the fractured edge.

Quasi-steady three-degrees-of-freedom aerodynamic model of inclined/yawed prisms: Formulation and instability for galloping and static divergence

  • Cristoforo Demartino;Zhen Sun;Giulia Matteoni;Christos T. Georgakis
    • Wind and Structures
    • /
    • v.37 no.1
    • /
    • pp.57-78
    • /
    • 2023
  • In this study, a generalized three-degree-of-freedom (3-DoF) analytical model is formulated to predict linear aerodynamic instabilities of a prism under quasi-steady (QS) conditions. The prism is assumed to possess a generic cross-section exposed to turbulent wind flow. The 3-DoFs encompass two orthogonal horizontal directions and rotation about the prism body axis. Inertial coupling is considered to account for the non-coincidence of the mass center and the rotation center. The aerodynamic force coefficients-drag, lift, and moment-depend on the Reynolds number based on relative flow velocity, angle of attack, and the angle between the wind and the cable. Aerodynamic forces are linearized with respect to the static equilibrium configuration and mean wind velocity. Routh-Hurwitz and Liénard and Chipart criteria are used in the eigenvalue problem, yielding an analytical solution for instabilities in galloping and static divergence types. Additionally, the minimum structural damping and stiffness required to prevent these instabilities are numerically determined. The proposed 3-DoF instability model is subsequently applied to a conductor with ice accretion and a full-scale dry inclined cable. In comparison to existing models, the developed model demonstrates superior prediction accuracy for unstable regions compared with results in wind tunnel tests.

INTERFERENCE CHARACTERISTICS OF CONSTRUCTION ENVIRONMENT FOR WSN APPLICATIONS

  • Sun-Chan Bae;Won-Sik Jang;Sang-Dae Park;Won-Suk Jang
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.592-595
    • /
    • 2013
  • Advent of Wireless Sensor Networks (WSN) has provided potentials to a variety of construction applications. It is well appreciated that WSNs have advantages over traditional wired system, such as ease of installation and maintenance with increased cost savings and efficiencies. However, the obstruction of wireless signal from physical objects in the heterogeneous construction environment often brings challenges to WSN measurement system. This paper analyzed the obstruction characteristic of construction environment where construction materials, equipment, and built structures obstruct the wireless signal yielding negative effect of measurement system. By adopting evaluation criteria, such as packet reception rate, field experiments have been implemented to quantitatively identify the interference of wireless signal from penetration, reflection, and network traffic under the construction environment. The results show that reliable performance of wireless sensor in construction environment depends on the optimal separation distance between a receiver and a transmitter, obstruction types, obstruction thickness, and transmission interval. In addition, the methodology and experimental results of this paper could be used in the practical design of network topology when hundreds of sensor nodes form a mesh network in the large scale construction applications.

  • PDF

A Study on the Strength Evaluation Method of Plate Structures with Penetration-holes (관통구를 갖는 판구조물의 강도평가 방법에 관한 연구)

  • Kim, Ul-Nyeon;Jang, Jun-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.6
    • /
    • pp.476-484
    • /
    • 2017
  • The purpose of this paper is to verify the structural integrity of a region with numerous penetration-holes in offshore structures such as semi-submersible rig and FPSO. In order to effectively check the yielding and buckling strength of plate members with penetration-holes, a screening analysis program was developed with the FE analysis tool to generate fine meshed model using the theoretical and analysis methods. When a hole is appeared in the plate structure members, the flow of stress is altered such that concentrations of stress form near the hole. Stress concentrations are of concern during both preliminary and detail design and need to be addressed from the perspectives of strength. To configure the geometrical shape, very fine meshed FE analysis is needed as the most accurate method. However, this method is practically impossible to apply for the strength verifications for all perforated plates. In this paper, screening analysis method was introduced to reduce analysis tasks prior to detailed FE analysis. This method is applied to not only the peak stress calculation combined stress concentration factor with nominal stress but also nominal equivalent stress calculation considering cutout effects. The areas investigated by very fine meshed analysis were to be chosen through screening analysis without any reinforcements for penetration-holes. If screening analysis results did not satisfy the acceptance criteria, direct FE analysis method as the 2nd step approach were applied with one of the coarse meshed model considering hole or with the very fine meshed model considering the hole shape and size. In order to effectively perform the local fine meshed analysis, automatic model generating program was developed based on the MSC/PATRAN which is pre-post FE analysis program. Buckling strength was also evaluated by Common Structure Rule (CSR) adopted by IACS as the stress obtained from very fine meshed FE analysis. Due to development of the screening analysis program and automatic FE modeling program, it was able to reduce the design periods and structural analysis costs.

Perspectives and Strategies of Production of Miscellaneous Crops and Animal Feeds (잡곡 및 사료 생산 수급전망과 대책)

  • Jung Seung Keun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 1998.10a
    • /
    • pp.266-287
    • /
    • 1998
  • Environmental conditions and expected profit are the major criteria to select crops to be cultivated in any region. Traditionally, miscellaneous crops have been cultivated as alternative crop in case of unfavorable climate or supplementary crop in marginal lands. Since the successful breeding of high yielding varieties of staple crops and development of cultural techniques in 1970s in Korea, production of miscellaneous crops decreased markedly due to the rapid commercialization of agriculture and increased productions of horticultural crops, although yields have been doubled during the last $2\~3$ decades. On the other hand, animal husbandry has been developing remarkably parallel with national economic development and the increased consumption of animal products. As a result, imports of feed grains such as corn have increased rapidly, while roughage production became lower than demand. Among miscellaneous crops, corn production increased markedly through the development of hybrids and due to its importance as silage crops. Acreage of corn production including grains, fresh corns and feeding is about 120,000 ha, while acreage of buckwheat is about 5,000 ha and those of other miscellaneous crops decreased to a level of about 1,000 ha. Although miscellaneous crops have low yield potential and are unprofitable due to low price and imports of cheap foreign products, they should be kept to cultivate. Miscellaneous crops are important components that maintain diversity among upland crops as well as alternative crops in case of unfavorable climate. The low yield potential of miscellaneous crops might be due to lack of efforts to breed high yielding varieties and to develope cultural techniques. Continuous investment in research, exploitation of new utilization for miscellaneous crops as sustainable crop, honey crop and sightseeing crop, and development of healthy and special foods will promote their cultivation. Animal feeding in Korea depends mainly on formula feeds. As the number of animals increases to meet demand of animal products, there is no alternative way but to import grains to feed them. But roughage production, which is necessary for normal growth of ruminant animals, should be increased. However, lack of arable land and pasture land limits the production of good roughages. It is estimated that number of course for meat and milk production will be $2.5{\~}2.6$ million and total of $6.2{\~}7.5$ million tons of roughages should be produced. This implies that more than 1 million tons of roughage are needed, although pasture land, upland for forage crops, forage crops after rice cultivation and rice straw are utilized. Therefore, new reclamation of pasture land, increased roughage production in cultivating land, increased cultivation of forage crops after rice, more utilization of rice straw and active exploration of indigenous plant species as roughage resources should be promoted

  • PDF

Analysis of Reinforcement Effect of Steel-Concrete Composite Piles by Numerical Analysis (II) - Bearing Capacity - (수치해석을 이용한 강관합성말뚝의 보강효과 분석 (II) - 지반 지지력 -)

  • Kim, Sung-Ryul;Lee, Si-Hoon;Chung, Moonkyung;Lee, Juhyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.267-275
    • /
    • 2009
  • The steel pipe of steel-concrete composite piles increases the pile strength and induces the ductile failure by constraining the deformation of the inner concrete. In this research, the load-movement relations and the reinforcement effect by the outer steel pipe in the steel-concrete composite pile were analyzed by performing three-dimensional numerical analyses, which can simulate the yielding behavior of the pile material and the elasto-plastic behavior of soils. The parameters analyzed in the study include three pile materials of steel, concrete and composite, pile diameter and loading direction. As the results, the axial capacity of the composite pile was 1.9 times larger than that of the steel pipe pile and similar with that of the concrete pile. At the allowable movement criteria, the horizontal capacity of the composite pile was 1.46 times larger than that of the steel pile and 1.25 times larger than that of the concrete pile. In addition, the horizontal movement at the pile head of the composite pile was about 78% of that of the steel pile and about 53% of that of the concrete pile, which showed that the movement reduction effect of the composite pile was significant and enables the economical design of drilled shafts.

Structural health monitoring of seismically vulnerable RC frames under lateral cyclic loading

  • Chalioris, Constantin E.;Voutetaki, Maristella E.;Liolios, Angelos A.
    • Earthquakes and Structures
    • /
    • v.19 no.1
    • /
    • pp.29-44
    • /
    • 2020
  • The effectiveness and the sensitivity of a Wireless impedance/Admittance Monitoring System (WiAMS) for the prompt damage diagnosis of two single-storey single-span Reinforced Concrete (RC) frames under cyclic loading is experimentally investigated. The geometrical and the reinforcement characteristics of the RC structural members of the frames represent typical old RC frame structure without consideration of seismic design criteria. The columns of the frames are vulnerable to shear failure under lateral load due to their low height-to-depth ratio and insufficient transverse reinforcement. The proposed Structural Health Monitoring (SHM) system comprises of specially manufactured autonomous portable devices that acquire the in-situ voltage frequency responses of a network of twenty piezoelectric transducers mounted to the RC frames. Measurements of external and internal small-sized piezoelectric patches are utilized for damage localization and assessment at various and increased damage levels as the magnitude of the imposed lateral cycle deformations increases. A bare RC frame and a strengthened one using a pair of steel crossed tension-ties (X-bracing) have been tested in order to check the sensitivity of the developed WiAMS in different structural conditions since crack propagation, damage locations and failure mode of the examined frames vary. Indeed, the imposed loading caused brittle shear failure to the column of the bare frame and the formation of plastic hinges at the beam ends of the X-braced frame. Test results highlighted the ability of the proposed SHM to identify incipient damages due to concrete cracking and steel yielding since promising early indication of the forthcoming critical failures before any visible sign has been obtained.

Direct Punching Shear Strength Model for Interior Slab-Column Connections and Column Footings with Shear Reinforcement (전단 보강 슬래브-기둥 내부 접합부 및 기초판에 대한 뚫림 전단강도 모델)

  • Choi, Kyoung-Kyu;Kim, Sug-Hwan;Kim, Dong-Hoon;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.159-168
    • /
    • 2011
  • In the present study, an improved design method was developed for the punching shear strength of interior slabcolumn connections and column footings with and without shear reinforcement. In the evaluation of the punching shear strength, the possible failure mechanisms of the connections and column footings were considered. The considered failures modes were inclined tensile cracking of concrete, yielding of shear re-bars, and concrete crushing of compression zone/strut. The punching shear applied to the concrete critical section was assumed to be resisted mainly by the compression zone. The punching shear strength of the concrete compression zone was evaluated based on the material failure criteria of the concrete subjected to the compressive normal stress and shear stress. For verification of the proposed design method, its prediction was compared with the existing test results. The result showed that the proposed method predicted the strengths of the test specimens better than the current design methods of the KCI code for both the shear reinforced and unreinforced cases.

Elasto-Plastic Analysis for J-integral Evaluation of Unstable Fracture in Cracked Ductile Materials (균열재(龜裂材)의 불안정연성파괴(不安定延性破壞)에 대한 J 적분(J積分) 평가(評價)를 위한 탄소성해석(彈塑性解析))

  • Chang, Dong Il;Jung, Kyoung Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.75-82
    • /
    • 1987
  • It is the objective of this study to estimate J-integral by numerical analysis, in which J-integral as aparameters in fracture mechanics can be used to evaluate unstable ductile fracture which is a important problem with respect to structural stability when the scope is beyond small scale yielding criteria. For this, 8-node isoparametric singular element as crack tip element of a cracked material was used to solve plastic blunting phenomenon at crack tip, and crack opening was forced to start when J-value was exceeding fracture toughness $J_{IC}$ of the material. And crack propagation behaviour was treated by using crack opening angle. From this study, it was shown that crack opening, stable propagation and unstable opening point of the cracked material found by using J-value obtained from this study were accord with the other study, so think, J-value obtained from this study can be directly used as a parameter in fracture mechanics to deal with the problem of stable propagation of crack and unstable ductile fracture.

  • PDF