• Title/Summary/Keyword: Yeongsan River Basin

Search Result 105, Processing Time 0.026 seconds

Analysis of Geomorphological Environment forthe Jar Coffins Location in the Yeongsan River Basin in Jeonnam Province (전남 영산강 유역에 있어서 옹관묘 입지의 지형환경 분석)

  • Park, Ji Hoon;Lee, Chan Hee
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.3
    • /
    • pp.13-25
    • /
    • 2016
  • The purpose of this study is to investigate the location characteristics in which 'large Jar coffin' (hereinafter referred to as 'Jar coffin') distributed in the Yeongsan river basin area in Jeonnam province by means of topographic analysis. 75 Jar coffins (74.3%) in 19 relics (90.5% of total) were found in hill and 26 Jar coffins (25.7%) of two consumption relics (9.5%) were found in floodplain. Among them, 34 (45.3% of total) and 41 (54.7% of total) Jar coffins were found in the Crest surface and Sideslope of hills, respectively. In particular, 26 (34.7%) Jar coffins are mostly located in the Crest flat. This result implies that people at that might be consider the river inundation, and mostly choose hill rather than floodplain when building the Jar coffin. therefore amongtherefore among micro-landform units of the hill, it seems that the 'Crest flat' was the preferred place for the building the Jar coffin at that time.

Assessment of Pollution Levels in the Jangsungcheon Watershed Using Load Duration Curves and Analysis of the Causes

  • Cho, Sohyun;Bak, Jonghun;Lee, Yeong Jae;Kim, Kyunghyun;Jung, Kang Young
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.873-885
    • /
    • 2019
  • In this study, a load duration curve was applied to the Jangseongcheon, one of the tributaries of the Yeongsan River, to assess whether the target water quality was achieved. In addition, pollution of the water body was investigated to develop and suggest the optimal management time with respect to polluted flow sections and monthly conditions. The average flow rates of sections JS1 and JS2 were $0.25m^3/s$ and $1.08m^3/s$, respectively. The BOD and T-P for water-quality standards at JS1 were rated at II, whereas the COD and TOC were rated at III, thus indicating a fair level of water quality. By contrast, the BOD at JS2 was rated at III, the T-P at IV, and the TOC at V, indicating poor water quality in this section. The load duration curve was plotted using the actual flow data measured in eight-day intervals for eight years from 2011 to 2018 at locations JS1 and JS2 in the Jangsungcheon Basin. In an assessment using the load duration curve on whether the target water quality was met at location JS1, all of the water quality parameters (BOD, COD, TOC, T-N, T-P, and SS) satisfied the target water quality. By contrast, at location JS2, parameters COD, TOC, T-N, and T-P exceeded target values by more than 50%, indicating the target water quality was not met. The discharge loads of locations JS1 and JS2 were analyzed to identify the reasons the target water quality was exceeded. Results revealed that the land system contributed considerably. Furthermore, the discharge load of JS2 accounted for more than 80% of the load on the entire basin, excluding that of JS1. Therefore, the best method for restraining the inflow of pollutants into the stream near location JS2 must be applied to manage the water quality of the Jangsungcheon.

A Study on the Waterway Restoration and its Utilization of the Yeongsan River (영산강의 주운복원과 활용방안 연구)

  • Kim, Jong-Il
    • Journal of the Korean association of regional geographers
    • /
    • v.11 no.1
    • /
    • pp.40-53
    • /
    • 2005
  • The Yeongsan River had played an important role as s waterway, but in 1981, the Yeongsan River Estuarin Barrage had been constructed, the waterway had been cut off. Since then, in the lower Yeongsan River basin, discussions about the waterway restoration and its utilization of the Yeongsan River has been proposed. But these discussions have not been examined thoroughly with geomorphological and hydrological characteristics of river charmel The waterway restoration and its utilization in the Yeongsan River should be based on scientific validity. In case of considering the conditions of the Yeongsan River, it is desired that the small ship for environmental survey and ecotourism is navigable from Gujinpo to Yeongsan River Estuarin Barrage by dredging a parts of river channel. To devise a plan about restoration and its utilization of waterway, it is necessary that regional and local governments, related administrative agencies, specialists, and NGO should develop the participation and cooperation systems based on governance.

  • PDF

Analysis of Characteristics in the Land Cover Types of Inland Wetlands Using the National Wetland DB at South Korea (국가습지 DB를 활용한 남한 내륙습지의 토지피복 유형 특성 분석)

  • Lee, Ye-Seul;Yoon, Hye-Yeon;Lee, Seong-Ho;JANG, Dong-Ho;Yun, Kwang-Sung;Lee, Chang-Su
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.4
    • /
    • pp.71-88
    • /
    • 2020
  • This study modified the properties and boundaries of the inland wetland types through the structural edit of the National Wetland DB, and analyzed the characteristics of the different land cover by area and the entire inland wetlands of South Korea. The inland wetlands of the Gangwon Basin had a small area of waters. In addition, the ratio of natural barren was high, reflecting the characteristics of the upper reaches of the large river in the east and west part of Gangwon Province. The Geum River Basin had a high percentage of aggregate land due to the development of large alluvial land, and the ratio of artistic barren was low, so various ecosystem service of wetland elements were distributed evenly. The Nakdong River Basin had a high proportion of waters as water level in the channel rose due to the installation of 4 Major Rivers Beam, and the ratio of Natural barren was low. Moreover, the water level of the main attributes flowing into the Nakdong River drainage system was not high, so the ratio of vegetation concentration was high. The Yeongsan River Basin showed that Waters had the high proportion. And the distribution of Natural barrens represented differently according to the Yeongsan River Basin and the Seomjin River Basin. Finally, Sand and Gravels supplied to rivers during precipitation were deposited in the main stream of the Han River Basin, and the differences between the side and high side was large in the area, reflecting the characteristics of the mouth of a river, so the Natural barren of Clay was distributed.

Evaluation of Water Quality Characteristics and Grade Classification of Yeongsan River Tributaries (영산강 수계 지류.지천의 수질 특성 평가 및 등급화 방안)

  • Jung, Soojung;Kim, Kapsoon;Seo, Dongju;Kim, Junghyun;Lim, Byungjin
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.504-513
    • /
    • 2013
  • Water quality trends for major tributaries (66 sites) in the Yeongsan River basin of Korea were examined for 12 parameters based on water quality data collected every month over a period of 12 months. The complex data matrix was treated with multivariate analysis such as PCA, FA and CA. PCA/FA identified four factors, which are responsible for the structure explaining 78.2% of the total variance. The first factor accounting 27.3% of the total variance was correlated with BOD, TN, TP, and TOC, and weighting values were allowed to these parameters for grade classification. CA rendered a dendrogram, where monitoring sites were grouped into 5 clusters. Cluster 2 corresponds to high pollution from domestic wastewater, wastewater treatment and run-off from livestock farms. For grade classification of tributaries, scores to 10 indexes were calculated considering the weighting values to 3 parameters as BOD, TN and TP which were categorized as the first factor after FA. The highest-polluted group included 10 tributaries such as Gwangjucheon, Jangsucheon, Daejeoncheon, Gamjungcheon, Yeongsancheon. The results indicate that grade classification method suggested in this study is useful in reliable classification of tributaries in the study area.

Distribution of large jar coffin on Location Characteristics of the Jar Coffins in the Yeongsan River Basin (영산강 유역 옹관묘의 입지특성으로 본 대형옹관의 유통)

  • Lee, Ae Jin;Park, Ji Hoon
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.4
    • /
    • pp.843-855
    • /
    • 2016
  • The objective of this study is to find out geomorphological characteristics of historical ruins where people produced and consumed large jar coffins excavated in the Yeongsan river basin using Fluvio-Marine Plains from detailed soil map. For this purpose, we chose the 21 consumption sites. The results are as follows. 21 consumption sites located in the region of upper limit of tidal internal in Yongsan River and tributary rivers. Among these, 18 Consumption sites has high accessibility with Fluvio-marine plains. This means that Consumption remains of Yongsan River basin have been located to area available for distribution from production sites.

  • PDF

A Study on the Selection of Non-point Pollution Management Regions with High Priority Order in the Yeongsan River Basin (영산강수계 비점오염원 중점관리지역 선정에 관한 연구)

  • Lee, JaeChoon;Park, HyeLin;Lim, ByungJin;Lee, ChangHee;Lee, SuWoong;Lee, YongWoon
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.347-355
    • /
    • 2012
  • In this study, non-point pollution sources in the Yeongsan river basin are analyzed; then, the priority regions (areas divided on a small scale) of management are selected for efficient water management of the Seungcheon and Jooksan reservoirs, which were constructed as one of the 4 major rivers restoration projects. The priority regions are decided by using the criteria of the excessive rate of target water quality, non-point pollution load per unit area, total TP load and down flow distance. The results of this study are as follows. The upper 10% of the priority regions for non-point pollution management includes YB15, YB05, YB10, YB24, YB14 and YB11 for the Seungcheon reservoir watershed, and YC24, YC25, YC30, YC34, YC22 and YC17 for the Jooksan reservoir watershed. However, a few regions in each of the Seungcheon and Jooksan reservoirs need to be selected in higher order, and the non-point pollution removal facilities in the regions need to be installed with respect to budget, urgent matter, and so on.

Characteristics of the Pollutants Ronoff on the Tamjin A and B Watershed with Discharge Variation (유량변동에 따른 탐진 A와 B유역에서의 오염물질 유출 특성)

  • Park, Jinhwan;Lim, Byungjin;Jung, Jaewoon;Kim, Daeyoung;Oh, Taeyoun;Lee, Dongjin;Kim, Kapsoon
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.6
    • /
    • pp.917-925
    • /
    • 2012
  • In this study, we report the runoff characteristics of pollutants for Tamjin A and B watershed in Tamjin river basin using statistical analysis, such as correlation analysis and regression equation. Flow rate and water qualtiy data collected from 2 sampling sites(Tamjin A and B watershed) during 3 years(2009~2011) were analyzed for biochemical oxygen demand(BOD), total nitorgen(TN), total phosphorus(TP) and suspended solid(SS). The results showed that strong correlations were observed between flow rate and SS in Tamjin A, while weak correlations were observed among the BOD, TN, and TP. In Tamjin B, strong correlations were observed among the flow rate, SS and T-P except BOD and TP. Meanwhile, the values of $R^2$ for regression equations between flow rate and pollutants load were greater than 0.7. Results of these statistics indicated that there was a good agreement between flow rate and pollutants load. Also, the flow rate exponents of regression equations for BOD, TN, and TP were smaller than 1 in Tamjin A. In Tamjin B, flow rate exponents of regression equation for BOD and TP were smaller than 1. These results indicated that concentrations of BOD, TN, TP in Tamjin A and concentrations of BOD and TP were decreased as the flow rate was increased. This means that rater than nonpoint sources, point sources affect BOD, TN and TP in Tamjin A and BOD and TP in Tamjin B.

Financial Resources allocation criteria for Integrated River Basin Management (유역통합관리를 위한 재원분담방안 연구)

  • Kim, Chong-Won;Kim, Chang-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.1 s.174
    • /
    • pp.63-72
    • /
    • 2007
  • The main purpose of this study is that financial resources allocation criteria are examined closely between central government and local government as well as among local government in a river basin. Financial resources allocation principles reflecting water use, flood control, and water quality improvement are reviewed and derived two categories such as common factors and individual factors. The weights of each factor are assigned by analytical hierarchy process. The results of applying four river basins (Han river, Geum river, Nakdong river, Yeongsan-seumjin river) show that rational raising of financial resources are different according to the characteristics of each river basin. Findings are as follows: In case of Han river and Yeongsan Seumjin river, benefit principle and polluter pay principle by individual factors are more attractive than other Principles. Solvency principle by common factor is more acceptable than the other principles in Nakdong-river and Geum-river.

Water Quality Characteristics Evaluation by Flow Conditions Using Load Duration Curve - in Youngbon A Watershed - (부하지속곡선을 이용한 유량 조건별 수질특성 평가 - 영본A 유역을 대상으로 -)

  • Park, Jinhwan;Kim, Kapsoon;Jung, Jaewoon;Hwang, Kyungsup;Moon, Myungjin;Ham, Sangin;Lim, Byungjin
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.4
    • /
    • pp.319-327
    • /
    • 2013
  • This study was conducted to identify runoff characteristics of pollutants using flow duration curve(FDC) and load duration curve(LDC) in Youngbon A watershed during 2009~2011. A flow rate and pollutant load in the study watershed were estimated by equation of stage-discharge and discharge-loads rating curve. From these methods, BOD, T-N, and T-P have evaluated whether water quality standards would have attained. Results showed that BOD loads of about 50% plotted above the LDC, while T-N and T-P loads of about 50% plotted below the curve. It means that BOD of about 50% have exceeded the water quality criteria, while T-N and T-P of about 50% have complied with the water quality standards. Meanwhile, BOD, TN and T-P loads plotted above the LDC of low flows, implying that they were more affected by point pollution sources than nonpoint pollution sources in the study watershed.