• Title/Summary/Keyword: Yeongnam (Sobaeksan) massif

Search Result 3, Processing Time 0.017 seconds

SHRIMP V-Pb Zircon Ages of the Granite Gneisses from the Pyeonghae Area of the northeastern Yeongnam Massif (Sobaeksan Massif) (영남(소백산)육괴 북동부 평해지역 화강편마암류의 SHRIMP U-Pb 저콘 연대)

  • Kim, Nam-Hoon;Song, Yong-Sun;Park, Kye-Hun;Lee, Ho-Sun
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.31-47
    • /
    • 2009
  • We performed petrological, geochemical, and geochronological study for the Pyeonghae granite gneiss and the Hada leuco-granite gneiss intruding the Paleoproterozoic meta-sedimentary rocks (pyeonghae formation and Wonnam formation) of the Pyeonghae area located in northeastem part of the Yeongnam (Sobaeksan) massif. The Pyeonghae granite gneiss generally has higher abundance of mafic minerals (biotite etc.), and posesses higher ${Fe_2}{O_3}^t$, MgO, CaO, $TiO_2$, $P_{2}O_{5}$ contents but lower $SiO_2$ and $K_{2}O$ contents than the Hada leuco-granite gneiss which tends to have slightly high $Al_{2}O_{3}$ and $Na_{2}O$ contents and slightly high larger negative Eu anomalies. However both gneisses reveal very similar REE concentrations and chondrite-normalized patterns and apparently show differentiation trend affected by crystallization of biotite, plagioclase, apatite and sphene. Their peraluminous and calc-alkaline chemistry suggests tectonic environment of volcanic arc. SHRIMP Zircon U-Pb age determinations yield upper intercept ages of $1990{\pm}23\;Ma$ ($2{\sigma}$) and $1939{\pm}41\;Ma$ ($2{\sigma}$), and weighted mean $^{207}Pb/^{206}Pb$ ages of $1982{\pm}6.3\;Ma$ ($2{\sigma}$) and $1959{\pm}28\;Ma$ ($2{\sigma}$) for the Pyeonghae granite gneiss and the Hada leuco-granite gneiss respectively, showing overlapping ages within the error. Our study suggests that the Precambrian granitoids in this area intruded contemporaneously with the Buncheon granite gneissin volcanic arc environment.

Geological Structures of the Limesilicates in the Songgang-ri, Cheongsong-gun, Korea (청송군 송강리 석회규산염암류의 지질구조)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.139-151
    • /
    • 2018
  • The Songgang-ri area, Cheongsong-gun, which is located in the Sobaeksan province of Yeongnam Massif near the southwestern boundary of Yeongyang subbasin of Gyeongsang Basin, consists of age unknown metamorphic rocks (banded gneiss, granitic gneiss, limesilicates) and age unknown igneous rock (granite gneiss) which intrudes them. This paper researched the geological structures of the Songgang-ri area from the geometric and kinematic features and the developing sequence of multi-deformed rock structures in the geological outcrops exposed about 170 m along the riverside of Yongjeoncheon in the eastern part of Songgang village, Songgang-ri. In the Songgang-ri geological outcrops are recognized three times (Fn, Fn+1, Fn+2) of folding, three times (Dk-I, Dk-II, Dk-III) intrusion of acidic dykes, one time of faulting, which are different in deformation and intrusion timing each other. These geological structures are at least formed by five times (Dn, Dn+1, Dn+2, Dn+3, Dn+4) of deformation. The Dn deformation is recognized by Fn fold which axial surface is parallel to the regional foliation. The Dn+1 intruded the (E)NE trending Dk-I dyke in the earlier phase and formed the NW trending Fn+1 fold in the later phase under compression of (E)NE-(W)SW direction. There are tight, isoclinal, intrafolial folds, boudinage, ${\sigma}$- or ${\delta}$-type boudins, asymmetric fold, C' shear band as the major deformed rock structures. The Dn+2 intruded the (N)NW trending Dk-II dyke in the earlier phase and formed NE trending Fn+2 fold in the later phase under compression of (N)NW-(S)SE direction. There are open fold and folded boudinage as those. The Dn+2 intruded the Dk-III dyke which cuts the Dk-I and Dk-II dykes and the axial surface of Fn+2 fold. The Dn+3 formed the left-handed reverse oblique-slip fault of NNE trend in which hanging wall moves into the SSE direction. Considering in that such five times of deformation recognized in the Songgang-ri geological outcrops are closely connected to the distribution and geological structure of the constituents in the more regional area as well as Songgang-ri area, the research result is expected to play a great data in clarifying and understanding the geological structure and its development process of the surrounding and boundary constituents of the Yeongnam Massif and Gyeongsang Basin.

Rn Occurrences in Groundwater and Its Relation to Geology at Yeongdong Area, Chungbuk, Korea (충북 영동군의 복합 지질과 지하수 라돈 함량과의 연관성에 대한 고찰)

  • Moon, Sang-Ho;Cho, Soo-Young;Kim, Sunghyun
    • Economic and Environmental Geology
    • /
    • v.51 no.5
    • /
    • pp.409-428
    • /
    • 2018
  • Yeongdong area is located on the border zone between Precambrian Yeongnam massif and central southeastern Ogcheon metamorphic belt, in which Cretaceous Yeongdong sedimentary basin exists. Main geology in this area consists of Precambrian Sobaeksan gneiss complex, Mesozoic igneous and sedimentary rocks and Quaternary alluvial deposits. Above this, age-unknown Ogcheon Supergroup, Paleozoic sedimentary rocks and Tertiary granites also occur in small scale in the northwestern part. This study focuses on the link between the various geology and Rn concentrations in groundwater. For this, twenty wells in alluvial/weathered zone and sixty bedrock aquifer wells were used. Groundwater sampling campaigns were twice run at wet season in August 2015 and dry season in March 2016. Some wells placed in alluvial/weathered part of Precambrian metamorphic rocks and Jurassic granite terrains, as well as Cretaceous porphyry, showed elevated Rn concentrations in groundwater. However, detailed geology showed the distinct feature that these high-Rn groundwaters in metamorphic and granitic terrains are definitely related to proximity of aquifer rocks to Cretaceous porphyry in the study area. The deeper wells placed in bedrock aquifer showed that almost the whole groundwaters in biotite gneiss and schist of Sobaeksan gneiss complex and in Cretaceous sedimentary rocks of Yeongdong basin have low level of Rn concentrations. On the other hand, groundwaters occurring in rock types of granitic gneiss or granite gneiss among Sobaeksan gneiss complex have relatively high Rn concentrations. And also, groundwaters occurring in the border zone between Triassic Cheongsan granites and two-mica granites, and in Jurassic granites neighboring Cretaceous porphyry have relatively high Rn concentrations. Therefore, to get probable and meaningful results for the link between Rn concentrations in groundwater and surrounding geology, quite detailed geology including small-scaled dykes or vein zones should be considered. Furthermore, it is necessary to take account of the spatial proximity of well location to igneous rocks associated with some mineralization/hydrothermal alteration zone rather than in-situ geology itself.