SHRIMP V-Pb Zircon Ages of the Granite Gneisses from the Pyeonghae Area of the northeastern Yeongnam Massif (Sobaeksan Massif)

영남(소백산)육괴 북동부 평해지역 화강편마암류의 SHRIMP U-Pb 저콘 연대

  • Kim, Nam-Hoon (Department of Environmental Geosciences, Pukyong National University) ;
  • Song, Yong-Sun (Department of Environmental Geosciences, Pukyong National University) ;
  • Park, Kye-Hun (Department of Environmental Geosciences, Pukyong National University) ;
  • Lee, Ho-Sun (Department of Environmental Geosciences, Pukyong National University)
  • 김남훈 (부경대학교 환경지질과학과) ;
  • 송용선 (부경대학교 환경지질과학과) ;
  • 박계헌 (부경대학교 환경지질과학과) ;
  • 이호선 (부경대학교 환경지질과학과)
  • Published : 2009.03.31

Abstract

We performed petrological, geochemical, and geochronological study for the Pyeonghae granite gneiss and the Hada leuco-granite gneiss intruding the Paleoproterozoic meta-sedimentary rocks (pyeonghae formation and Wonnam formation) of the Pyeonghae area located in northeastem part of the Yeongnam (Sobaeksan) massif. The Pyeonghae granite gneiss generally has higher abundance of mafic minerals (biotite etc.), and posesses higher ${Fe_2}{O_3}^t$, MgO, CaO, $TiO_2$, $P_{2}O_{5}$ contents but lower $SiO_2$ and $K_{2}O$ contents than the Hada leuco-granite gneiss which tends to have slightly high $Al_{2}O_{3}$ and $Na_{2}O$ contents and slightly high larger negative Eu anomalies. However both gneisses reveal very similar REE concentrations and chondrite-normalized patterns and apparently show differentiation trend affected by crystallization of biotite, plagioclase, apatite and sphene. Their peraluminous and calc-alkaline chemistry suggests tectonic environment of volcanic arc. SHRIMP Zircon U-Pb age determinations yield upper intercept ages of $1990{\pm}23\;Ma$ ($2{\sigma}$) and $1939{\pm}41\;Ma$ ($2{\sigma}$), and weighted mean $^{207}Pb/^{206}Pb$ ages of $1982{\pm}6.3\;Ma$ ($2{\sigma}$) and $1959{\pm}28\;Ma$ ($2{\sigma}$) for the Pyeonghae granite gneiss and the Hada leuco-granite gneiss respectively, showing overlapping ages within the error. Our study suggests that the Precambrian granitoids in this area intruded contemporaneously with the Buncheon granite gneissin volcanic arc environment.

영남(소백산)육괴 북동부의 고원생대 변성퇴적암류(평해층과 원남층)를 관입한 평해 화강편마암과 하다 우백질화강편마암에 대해 암석기재적, 지구화학적 및 지구연대학적 연구를 수행하였다. 평해 화강편마암은 하다 우백질화강편마암에 비해 대체로 흑운모 등 유색광물의 함량이 약간 높으며, 화학조성에서 $SiO_2$$K_2O$ 함량은 낮고 ${Fe_2}{O_3}^t$, MgO, CaO, $TiO_2$, $P_{2}O_{5}$ 등의 함량은 높다 하다 우백질화강편마암이 음(-)의 Eu 이상치가 다소 크지만 전체적인 희토류원소의 함량과 패턴은 평해 화강편마암과 매우 유사하다. 성분분화도에서 두 암체는 대체로 흑운모와 사장석, 인회석 또는 스핀의 정출에 의한 분화경향을 보인다. 두 화장편마암 모두 과알루미나질의 칼크-알칼리계열로 섭입대와 관련된 대륙화산호 조구조환경을 지시한다. 저어콘 U-Pb SHRIMP 연대측정의 결과를 보면 평해 화강편마암과 하다 우백질화강편마암의 상부교점연대는 각각 $1990{\pm}23\;Ma$ ($2{\sigma}$)와 $1939{\pm}41\;Ma$ ($2{\sigma}$)이고 $^{207}Pb/^{206}Pb$ 가중평균연령은 각각 $1982{\pm}6.3\;Ma$ ($2{\sigma}$)와 $1959{\pm}28\;Ma$ ($2{\sigma}$)로 오차범위에서 서로 겹치는 연대를 보인다. 따라서 이 지역에서의 선캠브리아기 화강암류의 관입시기는 분천화강편마암의 관입과 동시대이며, 태백산지역에서의 화강암질마그마작용은 대부분 이 시기에 대륙화산호 환경에서 있었던 것으로 해석된다.

Keywords

References

  1. 김기영, 김형식, 오창환, 박찬수, 강지훈, 류영복, 1996, 장군봉 일대 선캠브리아대-고생대 변성퇴적암류의 다변성작용 북부 소백산육괴의 중앙부지역의 지각진화와 환경지질 암석학회지, 5, 168-187
  2. 김남훈, 2001, 소백산육괴 북동부 평해 울진지역 선캠브리아기 기반암의 변성작용, 부경대학교 석사 학위논문, p.92
  3. 김남훈, 박계헌, 송용선, 강지훈, 2002, 평해-울진지역 선캠브리아기 기성통의 부재 및 평해통과 원남통의 관계에대한 소고. 암석학회지, 11, 271-277
  4. 김옥준, 홍만섭, 원종관, 박희인, 박양대, 김기태, 1963a, 한국지질대 1:50,000 평해도폭 및 설명서, 국립지질조사소, 28p
  5. 김옥준, 홍만섭, 박희인, 김기태, 1963b, 한국지질도 1:50,000 삼근리도폭 및 설명서. 국립지질조사소, 36p
  6. 김옥준, 홍만섭, 원종관, 박희인, 박양대, 김기태, 1963c, 한국지질도 1:50,000 도계동도폭 및 설명서. 국립지질조사소, 23p
  7. 김정찬, 고희재, 이승렬, 이창범, 최성자, 박기화, 2001, 1:250,000 강릉-속초 지질도폭 설명서. 한국지질자원연구원, 76p
  8. 박계헌, 정창식, 이광식, 장호완, 1993, 태백산지역의 고기 화강암 치 화강편마암류에 대한 납 동위원소 연구. 지질학회지, 29, 387-395
  9. 윤석규, 신병우, 1963, 한국지질도 1:50,000 울진도폭 및 설명서. 국립지질조사소, 23p
  10. 이상만, 김형식, 오인석, 1986, 삼척-죽변 일대 선캠브리아가 편마암류에 관한 변성암석학적 연구. 지질학회지, 22, 257-277
  11. 이현구, 박노영, 이마이나오야, 1992, 장군 광산 주변의 지질과 변성작용. 이석 남기상 선생 논문집, 21-44
  12. 정원석, 나기창, 2008, 삼척지역 북동 영남육괴에 분포하는 우백질 화강암의 기원 및 진화. 암석학회지, 17, 16-35
  13. 정원석, 정상원, 나기창, 2006, 삼척지역 이천화강편마암의 암석화학과 지질구조. 암석학회지, 15, 25-38
  14. 정창식, 권성택, 김정민, 장병욱, 1998, 경상분지 북부에 분포하는 온정리 화강암에 대한 암석학적, 동위원소 지구화학적 연구: 경상분지 다른 지역과 서남 일본 내대에 분포하는 백악기- 제3기 화강암류와의 비교 고찰. 암석학회지, 2, 77-97
  15. 정창식, 길영우, 김정민, 정연중, 임창복, 2004, 영남육괴 북동부 죽변지역 선캠브리아기 기반암류의 지구화학적 특징. 지질학회지, 40, 481-499
  16. 최만식, 정창식, 박계현, 1994, 암석 용해방법에 따른 미량원소 분석결과 비교. 암석학회지, 3, 41-48
  17. 황덕환, A.J. Reedman, 1975, 삼한 장군 광산 조사보고서, 한국 지질 광물 연구소, 지질 광물 조사보고서, 9-30
  18. 황재하, 김동학, 조등룡, 송교영, 1996, 1:250,000 안동 지질도폭 설명서. 과학기술처, 67p
  19. Black, L.P., Kamo, S.L., Allen, C.M., Aleinkoff, J.N., Davis, D.W., Korsh, R.J., and Foudoulis, C., 2003, TEMORA 1: a new zircon standard for Phanerozoic UPb geochronolgy. Chem. Geol., 200, 155-170 https://doi.org/10.1016/S0009-2541(03)00165-7
  20. Brique, L., Bougault, H., Joron, J.L., 1984, Quantification of Na, Ta, Ti, and V anomalies in magams associated with subduction zone-petrogenetic implications. Earth Planet. Sci. Lett., 28, 297-308
  21. Chang, H.W., Turek, A., and Kim, C.B., 2003, U-Pb zircon geochronology and Sm-Nd-Pb isotopic constraints for Precambrian plutonic rocks in the northeastern part of Ryeongnam massif, Korea. Geochem. Jour. 37, 471-491 https://doi.org/10.2343/geochemj.37.471
  22. Cheong, C.S., Kwon, S.-T., Park, K.-H., 2000, Pb and Nd isotope constraints on Paleproterozoic crustal evolution of the northern Yeongnam Massif, South Korea. Precam, Res. 102, 207-220 https://doi.org/10.1016/S0301-9268(00)00066-8
  23. Clarke, D., 1992, Granitoid rocks. Chapman and Hall, London, 238p
  24. Irvine, T.N. and Baragar, W.R.A., 1971, A guide to the chemical classification of the common rocks. Can. J. Earth Sci., 8, 523-548 https://doi.org/10.1139/e71-055
  25. Kim, C.B. and Turek, A., 1996, Advances in U-Pb zircon geochronology of Mesozoic plutonism in the southwestern part of Ryeongnam massif, Korea, Geochem. J., 30, 323-338 https://doi.org/10.2343/geochemj.30.323
  26. Kim, J. and Cho, M., 2003, Low-pressure metamorphism and leucogranite magmatism, northeastern Yeongnam Massif, Korea: implication for Paleoproterozoic crustal evolution. Precam. Res. 122, 235-251 https://doi.org/10.1016/S0301-9268(02)00213-9
  27. Lee, S.-G, Shin, S.-C., Jin, M.-S., Ogasawara, M., and Yang, M. K., 2005, Two Paleoproterozoic strongly peraluminous granitic plutons (Nonggeori and Naedeokri granites) at the northeastern part of Yeongnam Massif, Korea: Geochemical and isotopic constraints in East Asian crustal formation history, Precam. Res., 139, 101-120 https://doi.org/10.1016/j.precamres.2005.06.006
  28. Ludwig, K.R., 2001a, SQUID 1.00: A user's manual. Berkeley Geochronology Center special publication, No.2, 2455 Ridge Road, Berkeley, CA 94709, USA, 17p
  29. Ludwig, K.R., 2001b, User's manual for Isoplot/EX, version 2.49: a geochronological toolkit for microsoft excel. Berkeley Geochronology Center special publication, No. la, 2455 Ridge Road, Berkeley, CA 94709, USA, 17p
  30. Maniar, P.D. and Piccoli, P.M., 1989. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 101, 635-643 https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
  31. Pearce J.A, Harris N.B.W., and Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Jour. Petrol., 25, 956-983 https://doi.org/10.1093/petrology/25.4.956
  32. Spear, JA, 1987, Evolution of magmatic AFM mineral assemblages in granitoid rocks: the hornblende+melt= biotite reaction in the Liberty Hill pluton, South Carolina. Am. Mineral., 72, 863-878
  33. Steiger, R and Jger, E., 1977, Subcommission of geochronology: convention on the use of decay constants in geoand cosmo-chronology. Earth Planet. Sci. Lett., 36, 359-362 https://doi.org/10.1016/0012-821X(77)90060-7
  34. Streckeisen A. and Le Maitre R.W., 1979, A chemical approximation to the modal QAPF classification of igneous rocks. Neues Yahrb. Min. Abh., 136, 169-206
  35. Taylor, S.R., and McLennan, S.M., 1985. The continental ClUSt: its composition and evolution. Blackwell, Oxford, 312p
  36. Williams, I.S. and Claesson, S., 1987. Isotopic evidence tor the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappe, Scandinavian Caledonides. II. Ion microprobe zricon UTh- Pb. Contrib. Mineral. Petrol., 97, 205-217 https://doi.org/10.1007/BF00371240
  37. Williams, I.S., 1998, U-Th-Pb geochronology by ion microprobe. In: Mckibben, M.A., Shnakn, W.C..III., Ridley, W.L. (eds.), Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Society of Economic Geologists, Socorro, Rev. Econ. Geol., 7, 1-35
  38. Zen, E., 1986, Aluminum enrichment in silicate melts by fractional crystallization: Some mineralogic and petrographic constraints. Jour. Petrol., 27, 1095-1117 https://doi.org/10.1093/petrology/27.5.1095