• Title/Summary/Keyword: Yeongdong heavy snow

Search Result 12, Processing Time 0.027 seconds

Analysis of Cloud Properties Related to Yeongdong Heavy Snow Using the MODIS Cloud Product (MODIS 구름 산출물을 이용한 영동대설 관련 구름 특성의 분석)

  • Ahn, Bo-Young;Cho, Kuh-Hee;Lee, Jeong-Soon;Lee, Kyu-Tae;Kwon, Tae-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.2
    • /
    • pp.71-87
    • /
    • 2007
  • In this study, 14 heavy snow events in Yeongdong area which are local phenomena are analyzed using MODIS cloud products provided from NASA/GSFC. The clouds of Yeongdong area at observed at specific time by MODIS are classified into A, B, C Types, based on the characteristic of cloud properties: cloud top temperature, cloud optical thickness, Effective Particle Radius, and Cloud Particle Phase. The analysis of relations between cloud properties and precipitation amount for each cloud type show that there are statistically significant correlations between Cloud Optical Thickness and precipitation amount for both A and B type and also significant correlation is found between Cloud Top Temperature and precipitation amount for A type. However, for C type there is not any significant correlations between cloud properties and precipitation amount. A-type clouds are mainly lower stratus clouds with small-size droplet, which may be formed under the low level cold advection derived synoptically in the East sea. B-type clouds are developed cumuliform clouds, which are closely related to the low pressure center developing over the East sea. On the other hand, C-type clouds are likely multi-layer clouds, which make satellite observation difficult due to covering of high clouds over low level clouds directly related with Yeongdong heavy snow. It is, therefore, concluded that MODIS cloud products may be useful except the multi-layer clouds for understanding the mechanism of heavy snow and estimating the precipitation amount from satellite data in the case of Yeongdong heavy snow.

Study on Characteristics of Snowfall and Snow Crystal Habits in the ESSAY (Experiment on Snow Storms At Yeongdong) Campaign in 2014 (2014년 대설관측실험(Experiment on Snow Storms At Yeongdong: ESSAY)기간 강설 및 눈결정 특성분석)

  • Seo, Won-Seok;Eun, Seung-Hee;Kim, Byung-Gon;Ko, A-Reum;Seong, Dae-Kyeong;Lee, Gyu-Min;Jeon, Hye-Rim;Han, Sang-Ok;Park, Young-San
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.261-270
    • /
    • 2015
  • Characteristics of snowfall and snow crystal habits have been investigated in the campaign of Experiment on Snow Storms At Yeongdong (ESSAY) using radiosonde soundings, Global Navigation Satellite System (GNSS), and a digital camera with a magnifier for taking a photograph of snowfall crystals. The analysis period is 6 to 14 February 2014, when the accumulated snowfall amount is 192.8 cm with the longest snowfall duration of 9 days. The synoptic situations are similar to those of the previous studies such as the Low pressure system passing by the far South of the Korean peninsula along with the Siberian High extending to northern Japan, which eventually results in the northeasterly or easterly flows and the long-lasting snowfall episodes in the Yeongdong region. In general, the ice clouds tended to exist below around 2~3 km with the consistent easterly flows, and the winds shifted to northerly~northwesterly above the clouds layer. The snow crystal habits observed in the ESSAY campaign were mainly dendrite, consisting of 70% of the entire habits. The rimed habits were frequently captured when two-layered clouds were observed, probably through the process of freezing of super-cooled droplets on the ice particles. The homogeneous habit such as dendrite was shown in case of shallow clouds with its thickness of below 500 m whereas various habits were captured such as dendrites, rimed dendrites, aggregates of dendrites, plates, rimed plates, etc in the thick cloud with its thickness greater than 1.5 km. The dendrites appeared to be dominant in the condition of cloud top temperature specifically ranging $-12{\sim}-16^{\circ}C$. However, the association of snow crystal habits with temperature and super-saturation in the cloud could not be examined in the current study. Better understandings of characteristics of snow crystal habits would contribute to preventing breakdown accidents such as a greenhouse destruction and collapse of a temporary building due to heavy snowfall, and traffic accidents due to snow-slippery road condition, providing a higher-level weather information of snow quality for skiers participating in the winter sports, and estimating more accurate snowfall amount, location, and duration with the fallspeed of solid precipitation.

A Study on the Radar Reflectivity-Snowfall Rate Relation for Yeongdong Heavy Snowfall Events (영동 대설사례의 레이더 강설강도 추정 관계식에 관한 연구)

  • Jung, Sueng-Pil;Kwon, Tae-Yong;Park, Jun-Young;Choi, Byoung-Choel
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.509-522
    • /
    • 2016
  • Heavy snowfall events have occurred frequently in the Yeongdong region but understanding of these events have trouble in lack of snowfall observation in this region because it is composed of complex topography like the "Taebaek mountains" and the "East sea". These problems can be solved by quantitative precipitation estimation technique using remote sensing such as radar, satellite, etc. Two radars which are able to cover over Yeondong region were installed at Gangneung (GNG) and Gwangdeoksan (GDK). This study uses radar and water equivalent of snow cover to investigate the characteristics of radar echoes and the $Z_e-R$ relations associated with the 10 Yeongdong heavy snowfall events during the last 5 years (2010~2014). It was found that the heights which the probability of detection (POD) of snow detection by GNG radar is more than 80% are 3,000 m and 1,500 m in convective cloud and stratiform cloud, respectively. The vertical gradient of radar reflectivity is less decreased in convective cloud than stratiform cloud. However, POD by GDK radar are lower than 80% at all layers because the majority of Yeondong observational stations are more than 100 km away from GDK radar site. Furthermore, we examined $Z_e-R$ relation from the 10 events using GNG radar and compared the "a" and "b" obtained from these examinations at Sokcho (SC) and Daegwallyeong (DG). These "a" and "b" are estimated from radar echo at 500 m (SC) and 1,500 m (DG). The values of "a" differ in their stations such as SC and DG are 30~116 and 6~39, respectively. But "b" is 0.4~1.7 irrespective of stations. Moreover, the value of "a" increased with surface air temperature. Therefore, quantitative precipitation estimation in heavy snowfall events by radar echo using fixed "a" and "b" is difficult because these values changed according to those precipitation characteristics.

Observation and Understanding of Snowfall Characteristics in the Yeongdong Region (영동 지역에서 강설 특성 관측 및 이해)

  • Kim, Byung-Gon;Kim, Mi-Gyeong;Kwon, Tae-Young;Park, Gyun-Myung;Han, Yun-Deok;Kim, Seung-Bum;Chang, Ki-Ho
    • Atmosphere
    • /
    • v.31 no.4
    • /
    • pp.461-472
    • /
    • 2021
  • Yeongdong has frequently suffered from severe snowstorms, which generally give rise to societal and economic damages to the region in winter. In order to understand its mechanism, there has been a long-term measurement campaign, based on the rawinsonde measurements for every snowfall event at Gangneung since 2014. The previous observations showed that a typical heavy snowfall is generally accompanied with northerly or northeasterly flow below the snow clouds, generated by cold air outbreak over the relatively warmer East Sea. An intensive and multi-institutional measurement campaign has been launched in 2019 mainly in collaboration with Gangwon Regional Office of Meteorology and National Institute of Meteorological Studies of Korean Meteorological Administration, with a special emphasis on winter snowfall and spring windstorm altogether. The experiment spanned largely from February to April with comprehensive measurements of frequent rawinsonde measurements at a super site (Gangneung) with continuous remote sensings of wind profiler, microwave radiometers and weather radar etc. Additional measurements were added to the campaign, such as aircraft dropsonde measurements and shipboard rawinsonde soundings. One of the fruitful outcomes is, so far, to identify a couple of cold air damming occurrences, featuring lowest temperature below 1 km, which hamper the convergence zone and snow clouds from penetrating inland, and eventually make it harder to forecast snowfall in terms of its location and timing. This kind of comprehensive observation campaign with continuous remote sensings and intensive additional measurement platforms should be conducted to understand various orographic precipitation in the complex terrain like Yeongdong.

Sounding Observation with Wind Profiler and Radiometer of the Yeongdong Thundersnow on 20 January 2017 (2017년 1월 20일 영동 뇌설 사례에 대한 연직바람관측장비와 라디오미터 관측 자료의 분석)

  • Kwon, Ju-Hyeong;Kwon, Tae-Yong;Kim, Byung-Gon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.465-480
    • /
    • 2018
  • On 20 January 2017, the fresh snow cover which is more than 20 cm, accompaning with lightning occurred over Yeongdong coastal region for the first 3-hour of the heavy snowfall event. This study analyzed sounding observations in the heavy snow period which were including the measurements of wind profiler, radiometer and rawinsonde. The features examined from the vertical wind and temperature data at the two adjacent stations, Bukgangneung and Gangneung-Wonju National University, are summarized as follows: 1) The strong (30-40 kts) north-east winds were observed in the level from 2 to 6 km. The Strong atmospheric instability was found from 4 to 6 km, in which the lapse rate of temperature was about $-18^{\circ}C\;km^{-1}$. These features indicate that the deep convective cloud develops up to the height of 6 km in the heavy snowfall period, which is shown in the satellite infrared images. 2) The cooling was observed in the level below 1 km. At this time, the surface air temperature at Bukgangneung station decreased by $4^{\circ}C$. The narrow cooling zone estimated from AWS and buoy data was located in east-west direction. These are the features observed in the cold front of extratropical cyclone. The distributions of radar echo and lightning also show the same shape in east-west direction. Therefore, the results indicate that the Yeongdong thundersnow event was the combined precipitation system of deep convective cloud and cold frontal precipitation.

Cloud-cell Tracking Analysis using Satellite Image of Extreme Heavy Snowfall in the Yeongdong Region (영동지역의 극한 대설에 대한 위성관측으로부터 구름 추적)

  • Cho, Young-Jun;Kwon, Tae-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.83-107
    • /
    • 2014
  • This study presents spatial characteristics of cloud using satellite image in the extreme heavy snowfall of the Yeongdong region. 3 extreme heavy snowfall events in the Yeongdong region during the recent 12 years (2001 ~ 2012) are selected for which the fresh snow cover exceed 50 cm/day. Spatial characteristics (minimum brightness temperature; Tmin, cloud size, center of cloud-cell) of cloud are analyzed by tracking main cloud-cell related with these events. These characteristics are compared with radar precipitation in the Yeongdong region to investigate relationship between cloud and precipitation. The results are summarized as follows, selected extreme heavy snowfall events are associated with the isolated, well-developed, and small-scale convective cloud which is developing over the Yeongdong region or moving from over East Korea Bay to the Yeongdong region. During the period of main precipitation, cloud-cell Tmin is low ($-40{\sim}-50^{\circ}C$) and cloud area is small (17,000 ~ 40,000 $km^2$). Precipitation area (${\geq}$ 0.5 mm/hr) from radar also shows small and isolated shape (4,000 ~ 8,000 $km^2$). The locations of the cloud and precipitation are similar, but in there centers are located closely to the coast of the Yeongdong region. In all events the extreme heavy snowfall occur in the period a developed cloud-cell was moving into the coastal waters of the Yeongdong. However, it was found that developing stage of cloud and precipitation are not well matched each other in one of 3 events. Water vapor image shows that cloud-cell is developed on the northern edge of the dry(dark) region. Therefore, at the result analyzed from cloud and precipitation, selected extreme heavy snowfall events are associated with small-scale secondary cyclone or vortex, not explosive polar low. Detection and tracking small-scale cloud-cell in the real-time forecasting of the Yeongdong extreme heavy snowfall is important.

The Impact of Data Assimilation on WRF Simulation using Surface Data and Radar Data: Case Study (지상관측자료와 레이더 자료를 이용한 자료동화가 수치모의에 미치는 영향: 사례 연구)

  • Choi, Won;Lee, Jae Gyoo;Kim, Yu-Jin
    • Atmosphere
    • /
    • v.23 no.2
    • /
    • pp.143-160
    • /
    • 2013
  • The effect of 3DVAR (Three Dimension Variational data Assimilation) was examined by comparing observation and the simulations of CNTL (to which data assimilation was not applied) and ALL (to which data assimilation was applied using ground observation data and radar data) for the case of a heavy snowfall event (case A) of 11-12 February 2011 in the Yeongdong region. In case A, heavy snow intensively came in the Yeongdong coastal region rather than Daegwallyeong, in particular, around the Gangneung and Donghae regions with total precipitation in Bukgangneung at approximately 91 mm according to the AWS observation. It can be seen that compared to CNTL, ALL simulated larger precipitation along the Yeongdong coastline extending from Sokcho to Donghae while simulating smaller precipitation for inland areas including Daegwallyeong. On comparison of the total accumulated precipitations from simulations of CNTL and ALL, and the observed total accumulated precipitation, the positive effect of the assimilation of ground observation data and radar data could be identified in Bukgangneung and Donghae, on the other hand, the negative effect of the assimilation could be identified in the Daegwallyeong and Sokcho regions. In order to examine the average accuracy of precipitation prediction by CNTL and ALL for the entire Gangwon region including the major points mentioned earlier, the three hour accumulated precipitation from simulations of CNTL and ALL were divided into 5, 10, 15, 20, 25 and 30 mm/3hr and threat Scores were calculated by forecasting time. ALL showed relatively higher TSs than CNTL for all threshold values although there were some differences. That is, when considered generally based on the Gangwon region, the accuracy of precipitation prediction from ALL was improved somewhat compared to that from CNTL.

Comparison of Development Mechanisms of Two Heavy Snowfall Events Occurred in Yeongnam and Yeongdong Regions of the Korean Peninsula (영동과 영남 지역에서 발생한 두 대설의 발달 메커니즘 비교)

  • Park, Ji-Hun;Kim, Kyung-Eak;Heo, Bok-Haeng
    • Atmosphere
    • /
    • v.19 no.1
    • /
    • pp.9-36
    • /
    • 2009
  • Two heavy snowfall events occurred in Yeongnam and Yeongdong regions of the Korean Peninsula during the period from 4 to 6 March 2005 are analyzed. The events were developed by two different meso-scale snow clouds associated with an extratropical low passing over the Western Pacific. Based on synoptic data, GOES-9 satellite images, and precipitation amount data, the events were named as Sokcho and Busan cases, respectively. We analyzed the development mechanism of the events using meterological variables from the NCEP(National Centers for Environmental Prediction) /NCAR(National Centers for Atmospheric Research) reanalysis data such as potential vorticity(PV), divergence, tropopause undulation, static stability, and meridional wind circulation. The present analyses show that in the case of Sokcho, the cyclonic circulation in the lower atmosphere in the strong baroclinic region induced the cyclonic circulation in the upper atmosphere. The cyclonic circulation in the lower and upper atmosphere caused a heavy snowfall in the Sokcho region. In the case of Busan, the strong cyclonic circulation in the upper atmosphere was initiated by the stratospheric air intrusion with the high positive PV into the troposphere during the tropopause folding. The upper strong cyclonic circulation enhanced the cyclonic circulation in the lower disturbed atmosphere due to the extratropical low. This lower cyclonic circulation in turn, intensified the upper cyclonic circulation, that caused a heavy snowfall in the Busan region.

Analysis of the Relationship of Cold Air Damming with Snowfall in the Yeongdong Region (영동 지역 한기 축적과 강설의 연관성 분석)

  • Kim, Mi-Gyeong;Kim, Byung-Gon;Eun, Seung-Hee;Chae, Yu-Jin;Jeong, Ji-Hoon;Choi, Young-Gil;Park, Gyun-Myeong
    • Atmosphere
    • /
    • v.31 no.4
    • /
    • pp.421-431
    • /
    • 2021
  • The Yeongdong region is frequently vulnerable to heavy snowfall in winter in terms of societal and economical damages. By virtue of a lot of previous efforts, snowfall forecast has been significantly improved, but the performance of light snowfall forecast is still poor since it is very conducive to synoptic and mesoscale interactions, largely attributable to Taeback mountains and East Sea effects. An intensive observation has been made in cooperation with Gangwon Regional Meteorological Office and National Institute of Meteorological Studies in winter seasons since 2019. Two distinctive Cold Air Damming (CAD) events (14 February 2019 and 6 February 2020) were observed for two years when the snowfall forecast was wrong specifically in its location and timing. For two CAD events, lower-level temperature below 2 km ranged to lowest limit in comparisons to those of the previous 6-years (2014~2019) rawinsonde soundings, along with the stronger inversion strength (> 2.0℃) and thicker inversion depth (> 700 m). Further, the northwesterly was predominant within the CAD layer, whereas the weak easterly wind was exhibited above the CAD layer. For the CAD events, strong cold air accumulation along the east side of Taeback Mountains appeared to prevent snow cloud and convergence zone from penetrating into the Yeongdong region. We need to investigate the influence of CAD on snowfall in the Yeongdong region using continuous intensive observation and modeling studies altogether. In addition, the effect of synoptic and mesoscale interactions on snowfall, such as nighttime drainage wind and land breeze, should be also examined.

A Case Study of Heavy Snowfall with Thunder and Lightning in Youngdong Area (뇌전을 동반한 영동지역 대설 사례연구)

  • Kim, Hae-Min;Jung, Sueng-Pill;In, So-Ra;Choi, Byoung-Choel
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.187-200
    • /
    • 2018
  • The heavy snowfall phenomenon with thunder and lightning occurred in Yeongdong coastal region on 20 January 2017. Amount of snow on that day was a maximum of 47 cm and was concentrated in a short time (2 hours) at the Yeongdong coastal area. The mechanism of thundersnow was investigated to describe in detail using observational data and numerical simulation (Weather Research and Forecast, WRF) applied lightning option. The results show that a convective cloud occurred at the Yeongdong coastal area. The east wind flow was generated and the pressure gradient force was maximized by the rapidly developed cyclone. The cold and dry air in the upper atmosphere has descended (so called tropopause folding) atmospheric lower layer at precipitation peak time (1200 LST). In addition, latent heat in the lower atmosphere layer and warm sea surface temperature caused thermal instability. The convective cloud caused by the strong thermal instability was developed up to 6 km at that time. And the backdoor cold front was determined by the change characteristics of meteorological elements and shear line in the east sea. Instability indexes such as Total totals Index (TT) and Lightning Potential Index (LPI) are also confirmed as one of good predictability indicates for the explosive precipitation of convective rainfall.