• 제목/요약/키워드: Yelp

검색결과 18건 처리시간 0.027초

Applications of Machine Learning Models on Yelp Data

  • Ruchi Singh;Jongwook Woo
    • Asia pacific journal of information systems
    • /
    • 제29권1호
    • /
    • pp.35-49
    • /
    • 2019
  • The paper attempts to document the application of relevant Machine Learning (ML) models on Yelp (a crowd-sourced local business review and social networking site) dataset to analyze, predict and recommend business. Strategically using two cloud platforms to minimize the effort and time required for this project. Seven machine learning algorithms in Azure ML of which four algorithms are implemented in Databricks Spark ML. The analyzed Yelp business dataset contained 70 business attributes for more than 350,000 registered business. Additionally, review tips and likes from 500,000 users have been processed for the project. A Recommendation Model is built to provide Yelp users with recommendations for business categories based on their previous business ratings, as well as the business ratings of other users. Classification Model is implemented to predict the popularity of the business as defining the popular business to have stars greater than 3 and unpopular business to have stars less than 3. Text Analysis model is developed by comparing two algorithms, uni-gram feature extraction and n-feature extraction in Azure ML studio and logistic regression model in Spark. Comparative conclusions have been made related to efficiency of Spark ML and Azure ML for these models.

온라인 리뷰 유용성에 영향을 미치는 요인: 가격의 조절 효과 (Factors Affecting the Usefulness of Online Reviews: The Moderating Role of Price)

  • 윤지윤;노유나;권보람;장정주
    • 한국전자거래학회지
    • /
    • 제27권2호
    • /
    • pp.153-173
    • /
    • 2022
  • 본 연구는 yelp.com에서 2019년 작성된 온라인 음식점 리뷰를 분석하고, 음식점 소비 의사결정 과정에서 온라인 리뷰의 유용성 결정에 영향을 미치는 요인을 탐색한다. 구체적으로 리뷰 유용성에 영향을 미칠 것으로 예상되는 요인들을 정교화 가능성 모델에 따라 분류하고, 레스토랑의 가격대에 따라 그 영향이 달라질 것이라고 가정하였다. 2020년 2월 yelp.com에서 제공한 데이터 중, 미국 네바다주에 위치한 Food and Restaurant 카테고리에 속하는 업체들의 온라인 리뷰를 분석 대상으로 하였다. 음이항회귀분석 결과, 리뷰 깊이, 가독성을 포함한 중심단서 및 리뷰 일관성, 리뷰어 인기, 리뷰어 노출을 포함한 주변 단서가 리뷰 유용성에 긍정적인 영향을 미치는 것으로 확인되었다. 또한 음식점의 가격대가 높아질수록 리뷰 유용성에 영향을 미치는 선행요인의 영향이 달라지는 것으로 확인되었다. 본 연구는 레스토랑 가격이 리뷰의 유용성에 대한 중심 및 주변 단서의 영향을 조절한다는 것을 밝혔으며, 또한 리뷰 플랫폼과 외식업에 가격에 따라 차별화된 리뷰 관리 전략의 필요성에 대한 시사점을 제공한다.

텍스트 마이닝을 활용한 고객 리뷰의 유용성 지수 개선에 관한 연구 (A Study on Classifications of Useful Customer Reviews by Applying Text Mining Approach)

  • 이홍주
    • 한국IT서비스학회지
    • /
    • 제14권4호
    • /
    • pp.159-169
    • /
    • 2015
  • Customer reviews are one of the important sources for purchase decision makings in online stores. Online stores have tried to provide useful reviews in product pages to customers. To assess the usefulness of customer reviews before other users have voted enough on the reviews, diverse aspects of reviews were utilized in prevous studies. Style and semantic information were utilized in many studies. This study aims to test diverse alogrithms and datasets for identifying a proper classification method and threshold to classify useful reviews. In particular, most researches utilized ratio type helpfulness index as Amazon.com used. However, there is another type of usefulness index utilized in TripAdviser.com or Yelp.com, count type helpfulness index. There was no proper threshold to classify useful reviews yet for count type helpfulness index. This study used reivews and their usefulness votes on restaurnats from Yelp.com to devise diverse datasets and applied text mining approaches to classify useful reviews. Random Forest, SVM, and GLMNET showed the greater values of accuracy than other approaches.

온라인 리뷰의 감성과 독해 용이성이 리뷰 유용성에 미치는 영향: 가산형 리뷰 유용성 정보 활용 (The Effects of Sentiment and Readability on Useful Votes for Customer Reviews with Count Type Review Usefulness Index)

  • 루스 안젤리 크루즈;이홍주
    • 지능정보연구
    • /
    • 제22권1호
    • /
    • pp.43-61
    • /
    • 2016
  • 온라인 쇼핑몰의 상품에 대한 고객 리뷰는 구매자들의 구매 의사결정에 영향을 미치고 있으며 중요한 구전효과의 원천과 의사결정의 정보 원천의 역할을 하고 있다. 한 제품에 대한 리뷰가 무척 많기에 온라인 쇼핑몰들은 고객 리뷰 평가 방안을 도입하였고, 이를 통해 고객들에게 유용하리라고 판단되는 리뷰들을 걸러서 보여주거나 강조할 수 있게 되었다. 리뷰 평가 방안은 해당 리뷰가 도움이 되었는지 혹은 도움이 되지 않았는 지를 리뷰를 읽은 고객이 평가하게 하는 방안이다. Amazon.com은 고객 평가를 바탕으로 총 투표 수 중에서 유용하다는 투표 수의 비율을 리뷰 유용성 지표로 삼고 있으며, Yelp.com은 유용하다는 투표 수 자체를 유용성 지표로 삼고 있다. 본 연구는 고객 리뷰의 감성과 독해 용이성이 리뷰의 유용성에 미치는 영향을 파악하고자 한다. Amazon.com의 고객 리뷰 자료를 활용하여 비율형 유용성 지표를 종속변수로 하는 유사한 연구들이 수행되어 왔다. 본 연구에서는 Yelp.com의 리뷰 자료를 활용하여 가산형 리뷰 유용성 지표인 경우에도 동일한 효과가 존재하는지를 검토하고자 한다. Yelp.com의 음료와 음식 카테고리에 해당하는 업종에 대한 리뷰를 자료로 활용하였으며, 점포의 명성과 인기도 데이터를 파악할 수 있는 170,294개의 리뷰를 분석에 활용하였다. 분석결과는 리뷰의 긍정 정도는 유용 투표수를 늘리는데 음의 영향을 미쳤다. 평가가 긍정적인 리뷰에서는 음의 영향관계가 유의 하였으나, 평가가 부정적인 리뷰에서는 리뷰의 긍정 정도가 유용 투표 수에 미치는 영향은 유의하지 않았다. 독해 용이성은 리뷰가 읽기 어려울 수록 높은 값을 갖으며, 독해의 어려운 정도는 유용 투표수 획득에 음의 영향을 미쳤다. 독해 용이성은 긍정 리뷰, 부정 리뷰 관계없이 모두 음의 영향을 미치는 것으로 분석되었다. 이 결과는 유용 투표수가 0인 리뷰를 포함하여 영과잉 음이항 회귀분석을 수행한 경우와 유용 투표수가 0인 리뷰를 제외하고 음이항 회귀분석을 수행한 경우 모두 동일하게 파악되었다.

Too Much Information - Trying to Help or Deceive? An Analysis of Yelp Reviews

  • Hyuk Shin;Hong Joo Lee;Ruth Angelie Cruz
    • Asia pacific journal of information systems
    • /
    • 제33권2호
    • /
    • pp.261-281
    • /
    • 2023
  • The proliferation of online customer reviews has completely changed how consumers purchase. Consumers now heavily depend on authentic experiences shared by previous customers. However, deceptive reviews that aim to manipulate customer decision-making to promote or defame a product or service pose a risk to businesses and buyers. The studies investigating consumer perception of deceptive reviews found that one of the important cues is based on review content. This study aims to investigate the impact of the information amount of review on the review truthfulness. This study adopted the Information Manipulation Theory (IMT) as an overarching theory, which asserts that the violations of one or more of the Gricean maxim are deceptive behaviors. It is regarded as a quantity violation if the required information amount is not delivered or more information is delivered; that is an attempt at deception. A topic modeling algorithm is implemented to reveal the distribution of each topic embedded in a text. This study measures information amount as topic diversity based on the results of topic modeling, and topic diversity shows how heterogeneous a text review is. Two datasets of restaurant reviews on Yelp.com, which have Filtered (deceptive) and Unfiltered (genuine) reviews, were used to test the hypotheses. Reviews that contain more diverse topics tend to be truthful. However, excessive topic diversity produces an inverted U-shaped relationship with truthfulness. Moreover, we find an interaction effect between topic diversity and reviews' ratings. This result suggests that the impact of topic diversity is strengthened when deceptive reviews have lower ratings. This study contributes to the existing literature on IMT by building the connection between topic diversity in a review and its truthfulness. In addition, the empirical results show that topic diversity is a reliable measure for gauging information amount of reviews.

Context-Based Prompt Selection Methodology to Enhance Performance in Prompt-Based Learning

  • Lib Kim;Namgyu Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권4호
    • /
    • pp.9-21
    • /
    • 2024
  • 최근 딥러닝 분야가 빠르게 발전하는 가운데, 다양한 영역에서 거대 언어 모델을 활용하기 위한 많은 연구들이 진행되고 있다. 하지만 언어 모델의 개발 및 활용을 위해서는 방대한 데이터와 고성능 자원이 필요하다는 현실적인 어려움이 존재한다. 이에 따라 프롬프트를 활용하여 언어 모델을 효율적으로 학습할 수 있는 문맥 내 학습이 등장하였지만, 학습에 효과적인 프롬프트가 무엇인지에 대한 명확한 기준은 구체적으로 제시되지 않았다. 이에 본 연구에서는 문맥 내 학습 방법 중 하나인 PET 기법을 활용하여 기존 데이터의 문맥과 유사한 PVP를 선정하고, 이를 통해 생성한 프롬프트를 학습하여 모델의 성능을 향상시킬 수 있는 프롬프트 기반 학습 성능 향상 방법론을 제안한다. 제안 방법론의 성능 평가를 위해 온라인 비즈니스 리뷰 플랫폼인 Yelp에서 수집된 레스토랑 리뷰 데이터 30,100개로 실험을 수행한 결과, 제안 방법론이 기존의 PET 방법론에 비해 정확도와 안정성, 그리고 학습 효율성의 모든 측면에서 우수한 성능을 보임을 확인하였다.

문장 분류를 위한 정보 이득 및 유사도에 따른 단어 제거와 선택적 단어 임베딩 방안 (Selective Word Embedding for Sentence Classification by Considering Information Gain and Word Similarity)

  • 이민석;양석우;이홍주
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.105-122
    • /
    • 2019
  • 텍스트 데이터가 특정 범주에 속하는지 판별하는 문장 분류에서, 문장의 특징을 어떻게 표현하고 어떤 특징을 선택할 것인가는 분류기의 성능에 많은 영향을 미친다. 특징 선택의 목적은 차원을 축소하여도 데이터를 잘 설명할 수 있는 방안을 찾아내는 것이다. 다양한 방법이 제시되어 왔으며 Fisher Score나 정보 이득(Information Gain) 알고리즘 등을 통해 특징을 선택 하거나 문맥의 의미와 통사론적 정보를 가지는 Word2Vec 모델로 학습된 단어들을 벡터로 표현하여 차원을 축소하는 방안이 활발하게 연구되었다. 사전에 정의된 단어의 긍정 및 부정 점수에 따라 단어의 임베딩을 수정하는 방법 또한 시도하였다. 본 연구는 문장 분류 문제에 대해 선택적 단어 제거를 수행하고 임베딩을 적용하여 문장 분류 정확도를 향상시키는 방안을 제안한다. 텍스트 데이터에서 정보 이득 값이 낮은 단어들을 제거하고 단어 임베딩을 적용하는 방식과, 정보이득 값이 낮은 단어와 코사인 유사도가 높은 주변 단어를 추가로 선택하여 텍스트 데이터에서 제거하고 단어 임베딩을 재구성하는 방식이다. 본 연구에서 제안하는 방안을 수행함에 있어 데이터는 Amazon.com의 'Kindle' 제품에 대한 고객리뷰, IMDB의 영화리뷰, Yelp의 사용자 리뷰를 사용하였다. Amazon.com의 리뷰 데이터는 유용한 득표수가 5개 이상을 만족하고, 전체 득표 중 유용한 득표의 비율이 70% 이상인 리뷰에 대해 유용한 리뷰라고 판단하였다. Yelp의 경우는 유용한 득표수가 5개 이상인 리뷰 약 75만개 중 10만개를 무작위 추출하였다. 학습에 사용한 딥러닝 모델은 CNN, Attention-Based Bidirectional LSTM을 사용하였고, 단어 임베딩은 Word2Vec과 GloVe를 사용하였다. 단어 제거를 수행하지 않고 Word2Vec 및 GloVe 임베딩을 적용한 경우와 본 연구에서 제안하는 선택적으로 단어 제거를 수행하고 Word2Vec 임베딩을 적용한 경우를 비교하여 통계적 유의성을 검정하였다.

Poodle의 발성음 (Common Calls of Poodle)

  • 연성찬;서강문;권오경;남치주
    • 한국임상수의학회지
    • /
    • 제13권2호
    • /
    • pp.163-170
    • /
    • 1996
  • This study was performed to analyse the common calls of poddle spectrographically : bark, growl, howl, snore, yelp and whine. The sonograms of 6 common calls were shown their own specific features. There were significant differences among each types of common callsin the parceter of minimun frequency of call (MIFC), maximun frequency of call (MAFC), duration of call (DC), interval between call (IBC), dominant frequency (DF), F1 formant, F2 formant and F3 formant (P<0.01). It was considered that it was possible to record the main common calls dogs by sonograms and it sould be applied to objective basic data for understanding the psychological stats of dogs, the social relationship among them and the relationship sith human being.

  • PDF

빅데이터 처리를 위한 PC와 라즈베리파이 클러스터에서의 Apache Spark 성능 비교 평가 (Performance Evaluation Between PC and RaspberryPI Cluster in Apache Spark for Processing Big Data)

  • 서지혜;박미림;양혜경;용환승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.1265-1267
    • /
    • 2015
  • 최근 IoT 기술의 등장으로 저전력 소형 컴퓨터인 라즈베리파이 클러스터가 IoT 데이터 처리를 위해 사용되고 있다. IoT 기술이 발전하면서 다양한 데이터가 생성되고 있으며 IoT 환경에서도 빅데이터 처리가 요구되고 있다. 빅데이터 처리 프레임워크에는 일반적으로 하둡이 사용되고 있으며 이를 대체하는 솔루션으로 Apache Spark가 등장했다. 본 논문에서는 PC와 라즈베리파이 클러스터에서의 성능을 Apache Spark를 통해 비교하였다. 본 실험을 위해 Yelp 데이터를 사용하며 데이터 로드 시간과 Spark SQL을 이용한 데이터 처리 시간을 통해 성능을 비교하였다.

작성자 언어적 특성 기반 가짜 리뷰 탐지 딥러닝 모델 개발 (Development of a Deep Learning Model for Detecting Fake Reviews Using Author Linguistic Features)

  • 신동훈;신우식;김희웅
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제31권4호
    • /
    • pp.01-23
    • /
    • 2022
  • Purpose This study aims to propose a deep learning-based fake review detection model by combining authors' linguistic features and semantic information of reviews. Design/methodology/approach This study used 358,071 review data of Yelp to develop fake review detection model. We employed linguistic inquiry and word count (LIWC) to extract 24 linguistic features of authors. Then we used deep learning architectures such as multilayer perceptron(MLP), long short-term memory(LSTM) and transformer to learn linguistic features and semantic features for fake review detection. Findings The results of our study show that detection models using both linguistic and semantic features outperformed other models using single type of features. In addition, this study confirmed that differences in linguistic features between fake reviewer and authentic reviewer are significant. That is, we found that linguistic features complement semantic information of reviews and further enhance predictive power of fake detection model.