• Title/Summary/Keyword: Yellow-Sand Snow

Search Result 5, Processing Time 0.017 seconds

The Features Associated with the Yellow Sand Phenomenon Observed in Korea in Wintertime (겨울철 황상 현상의 특징)

  • 전영신;김지영;부경온;김남욱
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.487-497
    • /
    • 2000
  • Spring time is a favorable season to be easily observed the Yellow Sand phenomenon in East Asia. In particular most of the phenomenon tend to occur in April. However, Yellow Sand phenomenon was observed from almost the whole country of Korea in winter of 1966, 1977 and 1999. The features of the synoptic weather pattern in the source regions, air stream flow between the source region and Korea, the measurement of TSP concentration, aerosol size distribution, and chemical composition of snow samples associated with Yellow Sand phenomenon were investigated. The result showed the characteristic evolutionary feature of the synoptic system associated with Yellow Sand phenomena, that is, a strong low level wind mobilized the dust within 2 or 3 days before Yellow Sand phenomenon being observed in Seoul. The wind was remarkably intensified in the source region on January 24, 1999 under the strong pressure gradient, A trajectory analysis showed that the Yellow Sand particle could be reached to Korea within 2 days from the source region, Gobi desert, through Loess plateau and Loess deposition region. The TSP concentration at the top of Kwanak mountain during the Yellow Sand phenomenon is abruptly increasing than the monthly mean concentration. The size resolved number concentration of aerosols ranging from 0.3 to 25${\mu}{\textrm}{m}$ was analyzed during Yellow Sand episode. It was evident that aerosols were distinguished by particles in the range of 2-3 ${\mu}{\textrm}{m}$ to result in the abrupt increase in January 1999, After Yellow Sand phenomenon, there was heavy snow in Seoul. By the analysis of snow collected during that time, it was observed that both the Ca(sup)2+ concentration and pH were increased abnormally compared to those in the other winter season.

  • PDF

The Yellow-Sand Phenomenon and Yellow Fog Recorded in the "Koryosa" (고려사에 기록된 황사와 황무 현상)

  • 전영신;오성남;권완태
    • The Korean Journal of Quaternary Research
    • /
    • v.14 no.1
    • /
    • pp.49-55
    • /
    • 2000
  • The Yellow-Sand phenomena occurred during the period from l0C to 14C in Korea have been investigated using the historical record of the Koryosa. It is written as the "dust rain"or "mud" which means the falling down of dust from the sky. The authors have extracted 50 historical writings of dust rain from the Koryosa. The results show that the observation records concerning Yellow-Sand phenomenon for the period of Korea Dynasty (918~1392) are described with the scientific accuracy for the Yellow-Sand phenomena as the pure dust phenomena, the mixture of Yellow Sand with snow or rain, and the Yellow-Sand associated with fog or hail, etc. It is also found that the occurrence of Yellow-Sand phenomena was the incomprehensible natural phenomena such as Yellow-Sand were interpreted as a warning from the Heaven to the king and people of their fail in moral principles.in moral principles.

  • PDF

The Analysis of Student's Acts within Limits When Encountering Natural Disasters caused by the Degree of Environmental Sensibility of School Facilities according to Natural Disaster Damage: Focusing on High-schools in Seoul Metropolitan Area (재해시 학교시설의 환경적 지각 정도에 따른 학생의 활동제한의 분석: 수도권 고등학교를 중심으로)

  • Min, Chang-Kee
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.13 no.4
    • /
    • pp.31-42
    • /
    • 2006
  • This study is about an analysis of the relation between the degree of cognition of student's acts within limits when coping with several types of disaster and the degree of cognition of damage by disasters in the method of multiple regression analysis. The dependent variable is the degree of cognition of student's acts within limits and the independent variable is the degree of cognition of damage by disasters such as heavy snow, typhoon, heavy rain, heat, and yellow sand. A survey of graduates of metropolitan area high-schools has found that there are no difference between girls and boys of the degree of cognition of student's acts within limits when coping with disasters. This study finds that the independent variable, which are playgrounds, animals and plants, streets and roads, altitude and incline, gives positive effect to the degree of cognition of student's acts within limits when coping with typhoon or heavy rain in order. The study also finds that the degree of cognition of student's acts within limits when coping with heavy snow is affected positively by streets and roads, playgrounds, altitude and incline in order. It also shows that there are factors that has an effect to the degree of cognition of student's acts within limits when coping with yellow sand and heat. This study proposes suggestions to facility plans based on these facts discovered.

Isentropic Analysis for the Long Range Trajectories of Yellow Sands (등엔트로피 궤적에 의한 황사의 장거리 이동 경로 분석)

  • 윤순창;박경선
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.2
    • /
    • pp.89-95
    • /
    • 1991
  • Yellow sands often occur in Korea during April and May each year, and they are believed to come from the Mongolian Gobi desert as the snow starts to melt in Spring time. Since the analysis of aerosol particulates can hardly distinguish the origin of particulates, the isentropic analysis of meteorological data is often used for the trajectories of the long range transport of yellows sand or air pollutants. The yellow sand case of April 9 $\sim$ 15, 1988, in Korea is analyzed for the identification of long range transport of yellow sands and their trajectories in East Asia, using isentropic analyses. We have tranformed the ECMWF grid data, analyzed in pressure coordinates, into the isentropic coordinates and then have traced the 286 K and 290 K air mass which started Gobi desert. The result shows the transport of yellow sands from the Gobi desert to the Korean peninsula.

  • PDF

The Character of Distribution of Solar Radiation in Mongolia based on Meteorological Satellite Data (위성자료를 이용한 몽골의 일사량 분포 특성)

  • Jee, Joon-Bum;Jeon, Sang-Hee;Choi, Young-Jean;Lee, Seung-Woo;Park, Young-San;Lee, Kyu-Tae
    • Journal of the Korean earth science society
    • /
    • v.33 no.2
    • /
    • pp.139-147
    • /
    • 2012
  • Mongolia's solar-meteorological resources map has been developed using satellite data and reanalysis data. Solar radiation was calculated using solar radiation model, in which the input data were satellite data from SRTM, TERA, AQUA, AURA and MTSAT-1R satellites and the reanalysis data from NCEP/NCAR. The calculated results are validated by the DSWRF (Downward Short-Wave Radiation Flux) from NCEP/NCAR reanalysis. Mongolia is composed of mountainous region in the western area and desert or semi-arid region in middle and southern parts of the country. South-central area comprises inside the continent with a clear day and less rainfall, and irradiation is higher than other regions on the same latitude. The western mountain region is reached a lot of solar energy due to high elevation but the area is covered with snow (high albedo) throughout the year. The snow cover is a cause of false detection from the cloud detection algorithm of satellite data. Eventually clearness index and solar radiation are underestimated. And southern region has high total precipitable water and aerosol optical depth, but high solar radiation reaches the surface as it is located on the relatively lower latitude. When calculated solar radiation is validated by DSWRF from NCEP/NCAR reanalysis, monthly mean solar radiation is 547.59 MJ which is approximately 2.89 MJ higher than DSWRF. The correlation coefficient between calculation and reanalysis data is 0.99 and the RMSE (Root Mean Square Error) is 6.17 MJ. It turned out to be highest correlation (r=0.94) in October, and lowest correlation (r=0.62) in March considering the error of cloud detection with melting and yellow sand.