• Title/Summary/Keyword: Yellow and East China Sea

Search Result 214, Processing Time 0.02 seconds

Comparative Analysis of Surface Heat Fluxes in the East Asian Marginal Seas and Its Acquired Combination Data

  • Sim, Jung-Eun;Shin, Hong-Ryeol;Hirose, Naoki
    • Journal of the Korean earth science society
    • /
    • v.39 no.1
    • /
    • pp.1-22
    • /
    • 2018
  • Eight different data sets are examined in order to gain insight into the surface heat flux traits of the East Asian marginal seas. In the case of solar radiation of the East Sea (Japan Sea), Coordinated Ocean-ice Reference Experiments ver. 2 (CORE2) and the Objectively Analyzed Air-Sea Fluxes (OAFlux) are similar to the observed data at meteorological stations. A combination is sought by averaging these as well as the Climate Forecast System Reanalysis (CFSR) and the National Centers for Environmental Prediction (NCEP)-1 data to acquire more accurate surface heat flux for the East Asian marginal seas. According to the Combination Data, the annual averages of net heat flux of the East Sea, Yellow Sea, and East China Sea are -61.84, -22.42, and $-97.54Wm^{-2}$, respectively. The Kuroshio area to the south of Japan and the southern East Sea were found to have the largest upward annual mean net heat flux during winter, at -460- -300 and at $-370--300Wm^{-2}$, respectively. The long-term fluctuation (1984-2004) of the net heat flux shows a trend of increasing transport of heat from the ocean into the atmosphere throughout the study area.

Application of a Convolution Method for the Fast Prediction of Wind-Induced Surface Current in the Yellow Sea and the East China Sea (표층해류 신속예측을 위한 회선적분법의 적용)

  • 강관수;정경태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.3
    • /
    • pp.265-276
    • /
    • 1995
  • In this Paper, the Performance of the convolution method has been investigated as an effort to develop a simple system of predicting wind-driven surface current on a real time basis. In this approach wind stress is assumed to be spatially uniform and the effect of atmospheric pressure is neglected. The discrete convolution weights are determined in advance at each point using a linear three-dimensional Galerkin model with linear shape functions(Galerkin-FEM model). Four directions of wind stress(e.g. NE, SW, NW, SE) with unit magnitude are imposed in the model calculation for the construction of data base for convolution weights. Given the time history of wind stress, it is then possible to predict with-driven currents promptly using the convolution product of finite length. An unsteady wind stress of arbitrary form can be approximated by a series of wind pulses with magnitude of 6 hour averaged value. A total of 12 pulses are involved in the convolution product To examine the accuracy of the convolution method a series of numerical experiments has been carried out in the idealized basin representing the scale of the Yellow Sea and the East China Sea. The wind stress imposed varies sinusoidally in time. It was found that the predicted surface currents and elevation fields were in good agreement with the results computed by the direct integration of the Galerkin model. A model with grid 1/8$^{\circ}$ in latitude, l/6$^{\circ}$ in longitude was established which covers the entire region of the Yellow Sea and the East China Sea. The numerical prediction in terms of the convolution product has been carried out with particular attention on the formation of upwind flow in the middle of the Yellow Sea by northerly wind.

  • PDF

STOCK ASSESSMENT OF YELLOW CROAKER IN THE YELLOW SEA AND EAST CHINA SEA (황해및 동지나해의 참조기자원량 해석 -주로 한국기선저인망, 안강망, 유자망, 일본기선저인망 어장을 중심으로-)

  • SHIN Sang Taek
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.8 no.1
    • /
    • pp.11-19
    • /
    • 1975
  • Yellow croaker, Pseudosciaena manchurica Jordan et Thompson, in the Yellow Sea and the East China Sea are subjected to be caught by trawl nets, stow nets and gill nets throughout the year. Monthly indices of population size are calculated. Mathematic models (I) were used in order to determine catchability coefficient, natural mortality, fishing mortality, coefficient coefficient of the fishing ground and dispersion coefficient from the fishing ground. The results are summarized as follows: 1971 1972 1973 $$Catchability\;coefficient\;(C)=1.9369\times10^{-5}\;7.5459\times10^{-6}\;1.2670\times10^{-5}$$ Natural mortality (M) = 0.1645 0.6152 0.4367 Population for the first half season (February 1 to May 31) 1971 1972 1973 Initial\;population=\;107,100M/T 209,100M/T 214,400M/T Dispersion=83,000' 159,700' 133,400' Natural mortailty= 4,700' 32.700' 19,100' Final population= 2,800' 4,500' 49,000' Population for the latter half season (June 1st to the following January 31st) 1971 1972 1973 Initial population= 44,500M/T 67,500M/T 83,800MT Recruitment= 19,000' 183,900' 67,100' Natural mortality= 5,900' 67,900' 38,500' Final population= 37,000' 168,300' 92,400'.

  • PDF

A Study on the Yellow Sea Trade in Ancient Times (韓國 古代 黃海貿易에 關한 硏究)

  • Gang, Yong-Su
    • Journal of Korea Port Economic Association
    • /
    • v.20 no.2
    • /
    • pp.275-288
    • /
    • 2004
  • The rising of east-north economic bloc is notable in world economy due to the rapidly growth of china economy. The China's economic standing is gradually higher and higher because the joining of the WTO at 2001, development of the exterior open-door policy and the expansion of the trade between chain and several nations. Since Korea and China normalized diplomatic ties in 1992, the two have made remarkable progress in bilateral relations in the fields of economy and diplomacy in particular. The amount of Korea's trade with China has increased by over 20% a year on the average because of the development of the economic cooperation of Korea and China. That is to say, China was sixth trade partner by the end of 1993, based on the amount of trade. But China became third partner at 1993, second partner at 2003 and first partner at the first half of 2004, based on the amount of trade. Korea can not trade with China from the Korea's port opening period to Cold War period after second world war. But historically, the two countries have shared a active and long history of trade relations from the ancient times up to now. This is because two countries get near geographically and two countries have a implication of history and culture. Not only had Korea trade with China at prehistoric age, but also at BC 7. We knew that Korea had traded with China very actively at ancient times through the Paekje(Korea's ancient country) people's village at Santung province and Changbogo's trade works. Korea-china trade relation has played an important role for the development of world economy. Therefor, based on reviewing the korea-china trade, I study the historical meaning of the trade at the region of east-north asia.

  • PDF

Calibration and Validation of Ocean Color Satellite Imagery (해양수색 위성자료의 검.보정)

  • ;B. G. Mitchell
    • Journal of Environmental Science International
    • /
    • v.10 no.6
    • /
    • pp.431-436
    • /
    • 2001
  • Variations in phytoplankton concentrations result from changes of the ocean color caused by phytoplankton pigments. Thus, ocean spectral reflectance for low chlorophyll waters are blue and high chlorophyll waters tend to have green reflectance. In the Korea region, clear waters and the open sea in the Kuroshio regions of the East China Sea have low chlorophyll. As one moves even closer In the northwestern part of the East China Sea, the situation becomes much more optically complicated, with contributions not only from higher concentration of phytoplankton, but also from sediments and dissolved materials from terrestrial and sea bottom sources. The color often approaches yellow-brown in the turbidity waters (Case Ⅱ waters). To verify satellite ocean color retrievals, or to develop new algorithms for complex case Ⅱ regions requires ship-based studies. In this study, we compared the chlorophyll retrievals from NASA's SeaWiFS sensor with chlorophyll values determined with standard fluorometric methods during two cruises on Korean NFRDI ships. For the SeaWiFS data, we used the standard NASA SeaWiFS algorithm to estimate the chlorophyll_a distribution around the Korean waters using Orbview/ SeaWiFS satellite data acquired by our HPRT station at NFRDl. We studied In find out the relationship between the measured chlorophyll_a from the ship and the estimated chlorophyll_a from the SeaWiFs satellite data around the northern part of the East China Sea, in February, and May, 2000. The relationship between the measured chlorophyll_a and the SeaWiFS chlorophyll_a shows following the equations (1) In the northern part of the East China Sea. Chlorophyll_a =0.121Ln(X) + 0.504, R²= 0.73 (1) We also determined total suspended sediment mass (55) and compared it with SeaWiFS spectral band ratio. A suspended solid algorithm was composed of in-.situ data and the ratio (L/sub WN/(490 ㎚)L/sub WN/(555 ㎚) of the SeaWiFS wavelength bands. The relationship between the measured suspended solid and the SeaWiFS band ratio shows following the equation (2) in the northern part of the East China Sea. SS = -0.703 Ln(X) + 2.237, R²= 0.62 (2) In the near future, NFRDI will develop algorithms for quantifying the ocean color properties around the Korean waters, with the data from regular ocean observations using its own research vessels and from three satellites, KOMPSAT/OSMl, Terra/MODIS and Orbview/SeaWiFS.

  • PDF

Sediment Transport Paths of the East China Sea (동지나해(東支那海)의 토사이동경로(土砂移動經路))

  • Choi, Byung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.83-93
    • /
    • 1983
  • A non-linear numerical tidal model of the Yellow Sea and the East China Sea is used to derive the mean and maximum bed stress the mean and maximum transport potential on the continental shelf. It has provided a preliminary assessment of relation between sediment transport paths and the mean and maximum bed stress distribution determined from the numerical model.

  • PDF

Numerical Simulation of the Circulation and Suspended Materials Movement in the Yellow Sea and the East China Sea by Tidal Residual and Wind-Driven Current (조석잔차류와 해상풍에 의한 황해와 동중국해의 해수 순환과 부유물 이동 모델 연구)

  • Jeon, Hye-Jin;An, Hui-Soo
    • Journal of the Korean earth science society
    • /
    • v.18 no.6
    • /
    • pp.529-539
    • /
    • 1997
  • The circulations and movement of suspended materials by tidal residual current and seasonal surface wind in the Yellow Sea and the East China Sea are investigated by using a 2-dimensional barotropic model and a particle tracing technique. The tidal residual current is relatively strong around the south and west coast of Korea including the Cheju Island and southern coast of China. The current has a maximum speed of 10 cm/s in the vicinity of Cheju Island with a clockwise circulation. General tendency of the current, however, is to flow eastward along the southern coast of Korea. At the east coast of China from Shanghai to Tunghai, it also shows a eastward flow toward the South Sea of Korea. The anticyclonic circulation formed by wind-driven current and southward current prevails along the coast of Korea in the winter season(from October to April) when northerly wind is dominant. In summer(represented by July), however, the cyclonic circulation appears due to the influence of southerly wind. Suspended materials are advected by tidal residual current and wind-driven current. The long period(ten days) displacement by wind-driven current is bigger than that by tidal residual current. However, the tidal residual current would have the more important role for the advection of the suspended material considering longer period more than several months.

  • PDF

A numerical study on the dispersion of the Yangtze River water in the Yellow and East China Seas

  • Park, Tea-Wook;Oh, Im-Sang
    • Journal of the korean society of oceanography
    • /
    • v.39 no.2
    • /
    • pp.119-135
    • /
    • 2004
  • A three-dimensional numerical model using POM (the Princeton Ocean Model) is established in order to understand the dispersion processes of the Yangtze River water in the Yellow and East China Seas. The circulation experiments for the seas are conducted first, and then on the bases of the results the dispersion experiments for the river water are executed. For the experiments, we focus on the tide effects and wind effects on the processes. Four cases of systematic experiments are conducted. They comprise the followings: a reference case with no tide and no wind, of tide only, of wind only, and of both tide and wind. Throughout this study, monthly mean values are used for the Kuroshio Current input in the southern boundary of the model domain, for the transport through the Korea Strait, for the river discharge, for the sea surface wind, and for the heat exchange rate across the air-sea interface. From the experiments, we obtained the following results. The circulation of the seas in winter is dependent on the very strong monsoon wind as several previous studies reported. The wintertime dispersion of the Yangtze River water follows the circulation pattern flowing southward along the east coast of China due to the strong monsoon wind. Some observed salinity distributions support these calculation results. In summertime, generally, low-salinity water from the river tends to spread southward and eastward as a result of energetic vertical mixing processes due to the strong tidal current, and to spread more eastward due to the southerly wind. The tide effect for the circulation and dispersion of the river water near the river mouth is a dominant factor, but the southerly wind is still also a considerable factor. Due to both effects, two major flow directions appear near the river mouth. One of them is a northern branch flow in the northeast area of the river mouth moving eastward mainly due to the weakened southerly wind. The other is a southern branch flow directed toward the southeastern area off the river mouth mostly caused by tide and wind effects. In this case, however, the tide effect is more dominant than the wind effect. The distribution of the low salinity water follows the circulation pattern fairly well.

On the Wintertime Wind-driven Circulation in the Yellow Sea and the East China Sea : Part I. Effect of Tide-induced Bottom Friction (황해.동중국해의 겨울철 취송 순환에 대하여: Part I. 조류에 의한 저면 마찰력의 영향)

  • Lee, Jong-Chan;Kim, Chang-Shik;Jung, Kyung-Tae;Jun, Ki-Cheon
    • Ocean and Polar Research
    • /
    • v.25 no.spc3
    • /
    • pp.361-371
    • /
    • 2003
  • The effect of bottom friction on the steady wind-driven circulation in the Yellow Sea and the East China Sea (YSECS) has been studied using a two-dimensional numerical model with and without tidal forcing. Upwind flow experiment in YSECS has also been carried out with a schematic time variation in the wind field. The surface water setup and circulation pattern due to steady wind forcing are found to be very sensitive to the bottom friction. When the effects of tidal currents are neglected, the overall current velocities are overestimated and eddies of various sizes appear, upwind flow is formed within the deep trough of the Yellow Sea, forming a part of the topographic gyre on the side of Korea. When tidal forcing is taken into account, the wind-induced surface elevations are smoothed out due to the strong tide-induced bottom friction, which is aligned almost normal to the wind stresses; weak upwind flow is farmed in the deep trough of the Yellow Sea, west and south of Jeju. Calculation with wind forcing only through a parameterized linear bottom friction produces almost same results from the calculation with $M_2$ tidal forcing and wind forcing using a quadratic bottom friction, supporting Hunter (1975)'s linearization of bottom friction which includes the effect of tidal current, can be applied to the simulation of wind-driven circulation in YSECS. The results show that steady wind forcing is not a dominant factor to the winter-time upwind flow in YSECS. Upwind flow experiment which considers the relaxation of pressure gradient (Huesh et al. 1986) shows that 1) a downwind flow is dominant over the whole YSECS when the northerly wind reaches a maximum speed; 2) a trend of upwind flow near the trough is found during relaxation when the wind abates; 3) a northward flow dominates over the YSECS after the wind stops. The results also show that the upwind flow in the trough of Yellow Sea is forced by a wind-induced longitudinal surface elevation gradient.

Major Elemental Compositions of Korean and Chinese River Sediments: Potential Tracers for the Discrimination of Sediment Provenance in the Yellow Sea (한국과 중국의 강 퇴적물의 주성분 원소 함량 특성: 황해 니질 퇴적물의 기원지 연구를 위한 잠재적 추적자)

  • Lim, Dhong-Il;Shin, In-Hyun;Jung, Hoi-Soo
    • Journal of the Korean earth science society
    • /
    • v.28 no.3
    • /
    • pp.311-323
    • /
    • 2007
  • The Yellow and East China seas received a vast amount of sediment $(>10^9ton/yr)$, which comes mainly from the Changjiang and Huanghe rivers of China and the Korean rivers. However, there are still no direct sedimentological-geochemical indicators, which can distinguish these two end-members (Korean and Chinese river sources) in these seas. The purpose of this study is to provide the potential geochemical-tracers enabling these river materials to be identified within the sediment load of the Yellow and East China seas. The compositions of major elements (Al, Fe, Mg, K, Ca, Na, and Ti) of Chinese and Korean river sediments were analyzed. To minimize the grain-size effect, furthermore, bulk sediments were separated into two groups, silt $(60-20{\mu}m)$ and clay $(<20{\mu}m)$ fractions, and samples of each fraction were analyzed for major and strontium isotope $(^{87}Sr/^{86}Sr)$ compositions. In this study, Fe/Al and Mg/Al ratios in bulk sediment samples, using a new Al-normalization procedure, are suggested as an excellent tool for distinguishing the source of sediments in the Yellow and East China seas. This result is clearly supported by the concentrations of these elements in silt and clay fraction samples. In silt fraction samples, Korean river sediments have much higher $^{87}Sr/^{86}Sr$ ratio $(0.7229{\sim}0.7253)$ than Chinese river sediments $(0.7169{\sim}0.7189)$, which suggests the distribution pattern of $^{87}Sr/^{86}Sr$ ratios as a new tracer to discriminate the provenance of shelf sediments in the Yellow and East China seas. On the basis of these geochemical tracers, clay fractions of southeastern Yellow Sea mud (SEYSM) patch may be a mixture of two sediments originated from Korea and China. In contrast, the geochemical compositions of silt fractions are very close to that of Korea river sediments, which indicates that the silty sediments of SEYSM are mainly originated from Korean rivers.