• Title/Summary/Keyword: Yeast two-hybrid screen

Search Result 24, Processing Time 0.025 seconds

BRI3 associates with SCG10 and attenuates NGF-induced neurite outgrowth in PC12 cells

  • Gong, Yanhua;Wu, Jing;Qiang, Hua;Liu, Ben;Chi, Zhikai;Chen, Tao;Yin, Bin;Peng, Xiaozhong;Yuan, Jiangang
    • BMB Reports
    • /
    • v.41 no.4
    • /
    • pp.287-293
    • /
    • 2008
  • In a yeast two-hybrid screen, we identified the microtubule-destabilizing protein SCG10 as a potential effector protein of $BRI_3$. The association was verified using GST pull-down, Co-IP, and their perinuclear co-localization. The analysis of in vitro microtubule polymerization/depolymerization showed that the binding of $BRI_3$ to SCG10 effectively blocked the ability of SCG10 to induce microtubule disassembly, as determined by turbidimetric assays. In intact PC12 cells, $BRI_3$ exhibited the ability to stabilize the microtubule network and attenuate the microtubule-destabilizing activity of SCG10. Furthermore, co-expression of $BRI_3$ with SCG10 attenuated SCG10-mediated PC12 cell neurite outgrowth induced by NGF. These results identify a novel connection between a neuron-specific BRI protein and the cytoskeletal network, suggesting possible roles of BRI3 in the process of neuronal differentiation.

Isolation of CONSTANS as a TGA4/OBF4 Interacting Protein

  • Song, Young Hun;Song, Na Young;Shin, Su Young;Kim, Hye Jin;Yun, Dae-Jin;Lim, Chae Oh;Lee, Sang Yeol;Kang, Kyu Young;Hong, Jong Chan
    • Molecules and Cells
    • /
    • v.25 no.4
    • /
    • pp.559-565
    • /
    • 2008
  • Members of the TGA family of basic domain/leucine zipper transcription factors regulate defense genes through physical interaction with NON-EXPRESSOR OF PR1 (NPR1). Of the seven TGA family members, TGA4/octopine synthase (ocs)-element-binding factor 4 (OBF4) is the least understood. Here we present evidence for a novel function of OBF4 as a regulator of flowering. We identified CONSTANS (CO), a positive regulator of floral induction, as an OBF4-interacting protein, in a yeast two-hybrid library screen. OBF4 interacts with the B-box region of CO. The abundance of OBF4 mRNA cycles with a 24 h rhythm under both long-day (LD) and short-day (SD) conditions, with significantly higher levels during the night than during the day. Electrophoretic mobility shift assays revealed that OBF4 binds to the promoter of the FLOWERING LOCUS T (FT) gene, a direct target of CO. We also found that, like CO and FT, an OBF4:GUS construct was prominently expressed in the vascular tissues of leaf, indicating that OBF4 can regulate FT expression through the formation of a protein complex with CO. Taken together, our results suggest that OBF4 may act as a link between defense responses and flowering.

CUEDC2, CUE Domain Containing Protein 2, Associates with Kinesin-1 by Binding to the C-Terminus of KIF5A (CUE 도메인 포함 단백질인 CUEDC2는 KIF5A의 C-말단과 결합을 통하여 Kinesin-1와 결합)

  • Myoung Hun Kim;Se Young Pyo;Young Joo Jeong;Sung Woo Park;Mi Kyoung Seo;Won Hee Lee;Sang-Hwa Urm;Mooseong Kim;Jung Goo Lee;Dae-Hyun Seog
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.868-875
    • /
    • 2023
  • Kinesin-1 is a motor protein identified as the first member of the kinesin superfamily (KIF), which plays a role in intracellular cargo transport by acting as microtubule-dependent motor proteins within cells. Kinesin-1 consists of two heavy chains (KHCs, also known as KIF5s) and two light chains (KLCs). The 93 amino acids in the carboxyl (C)-terminal tail region of KIF5A are not homologous to the C-terminal tail region of KIF5B or the C-terminal tail region of KIF5C. In this study, we used a yeast two-hybrid screen to identify the binding proteins that interacted with the C-terminal region of KIF5A. We found an association between KIF5A and CUE domain containing 2 (CUEDC2), which is proposed to function as an adaptor protein involved in ubiquitination pathways and protein trafficking. CUEDC2 bound to the C-terminal region of KIF5A and did not interact with KIF5B (the motor of kinesin-1), KIF3A (the motor of kinesin-2), or kinesin light chain 1 (KLC1). KIF5A specifically bound to the C-terminal region of CUEDC2. Furthermore, KIF5A did not interact with another isoform: CUEDC1. In addition, glutathione S-transferase (GST) pull-downs showed that KIF5A directly bound GST-CUEDC2 but did not interact with GST-CUEDC1 and GST alone. When myc-KIF5A and EGFP-CUEDC2 were co-expressed in HEK-293T cells, CUEDC2 co-immunoprecipitated with kinesin-1, and myc-KIF5A and FLAG-CUEDC2 colocalized in the cells. These results suggest that in intracellular cargo transport by kinesin-1, CUEDC2 serves as an adaptor protein connecting kinesin-1 and cargo by binding to KIF5A.

CDK2AP1, a Cyclin-Dependent Kinase 2-Associated Protein, Interacts with Kinesin-1 through Kinesin Superfamily Protein 5A (KIF5A) (Cyclin-dependent kinase 1 결합 단백질 CDK2AP1은 kinesin superfamily protein 5A (KIF5A)을 매개로 Kinesin-1와 결합)

  • Myoung Hun Kim;Se Young Pyo;Young Joo Jeong;Sung Woo Park;Mi Kyoung Seo;Won Hee Lee;Sang-Hwa Urm;Mooseong Kim;Jung Goo Lee;Dae-Hyun Seog
    • Journal of Life Science
    • /
    • v.33 no.7
    • /
    • pp.531-537
    • /
    • 2023
  • Intracellular and axonal transport is mediated by microtubule-dependent motor proteins, such as kinesins and cytoplasmic dynein. Kinesin moves along the microtubule to the positive end of the microtubule, while dynein moves to the negative end of the microtubule. Kinesin-1 was first identified as a kinesin superfamily protein (KIF) that functions in the intracellular transport of various cargoes, including organelles, neurotransmitter receptors, and mRNA-protein complexes, through interactions between the carboxyl (C)-terminal domain and the cargo. It interacts with other cargoes, but the adapter/scaffold proteins that mediate between kinesin-1 and the cargo have yet to be fully identified. In this study, a yeast two-hybrid screen was used to identify adapter proteins that interact with the C-terminal region of KIF5A. We found an association between the C-terminal region of KIF5A and the cyclin-dependent kinase 2-associated protein 1 (CDK2AP1), originally identified in malignant hamster oral keratinocytes. CDK2AP1 bound to the C-terminal region of KIF5A and did not interact with KIF3A (the motor of kinesin-2), KIF5B, KIF5C, and kinesin light chain 1 (KLC1). The C-terminal region of CDK2AP1 is essential for its interaction with KIF5A. When co-expressed in HEK-293T cells, CDK2AP1 and kinesin-1 co-immunoprecipitated and co-localized in the cells. These results suggest that the KIF5A-CDK2AP1 interaction serves as an adapter protein connecting kinesin-1 and the cargo when kinesin-1 transports cargo in cells.