• Title/Summary/Keyword: Yeast transformation

Search Result 58, Processing Time 0.019 seconds

An Efficient Plant Regeneration and Transformation System of Robinia pseudoacacia var. umbraculifera for Phytoremediation

  • Kwon, Hye-Jin;Woo, Seong-Min;Seul, Eun-Jun;Kim, Teh-Ryung;Shin, Dong-Un;Kim, Hag-Hyun
    • Journal of Plant Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.293-298
    • /
    • 2007
  • Robinia pseudoacacia var. umbraculifera, commonly called umbrella black locust were regenerated after co-cultivation of internode segments with Agrobacterium tumefaciens which included yeast cadmium factor 1 (YCF 1) gene. The tolerance to cadmium and lead for plants can be increased by the YCF1 gene expression. Moreover, the recent studies have shown that YCF1 gene transgenic plants increase the accumulation of cadmium and lead into plant vacuoles. The effect of plant growth regulator such as 2,4-dichlorophenoxyacetic acid (2,4-D), ${\alpha}$-naphthaleneacetic acid (NAA), 6-benzyladenine (BA), and thidiazuron (TDZ) were studied to evaluate the propagation of plants through internode explants. The efficient induction of multiple adventitious shoots and callus were observed on a medium supplemented with 0.1 mg/L TDZ + 0.2 mg/L BA. To induce shoot elongation and rooting, regenerated shoots were transferred into basal MS medium without any plant growth regulator. Successful Agrobacterium tumefaciens mediated transformation was obtained by 20 min vacuum-infiltration with $50{\mu}M$ acetosyringone on the optimal multiple shoot induction medium with 30 mg/L hygromycin and 300 mg/L cefotaxime. To confirm the integration and expression of transgene, Polymerase Chain Reaction (PCR) and Reverse Transcriptase PCR (RT-PCR) were performed with specific primers. The frequency of transformation was approximately 18.94%. This study can be used to genetic engineering of phytoremediator.

Pro-Apoptotic Role of the Human YPEL5 Gene Identified by Functional Complementation of a Yeast moh1Δ Mutation

  • Lee, Ji Young;Jun, Do Youn;Park, Ju Eun;Kwon, Gi Hyun;Kim, Jong-Sik;Kim, Young Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.633-643
    • /
    • 2017
  • To examine the pro-apoptotic role of the human ortholog (YPEL5) of the Drosophila Yippee protein, the cell viability of Saccharomyces cerevisiae mutant strain with deleted MOH1, the yeast ortholog, was compared with that of the wild-type (WT)-MOH1 strain after exposure to different apoptogenic stimulants, including UV irradiation, methyl methanesulfonate (MMS), camptothecin (CPT), heat shock, and hyperosmotic shock. The $moh1{\Delta}$ mutant exhibited enhanced cell viability compared with the WT-MOH1 strain when treated with lethal UV irradiation, 1.8 mM MMS, $100{\mu}M$ CPT, heat shock at $50^{\circ}C$, or 1.2 M KCl. At the same time, the level of Moh1 protein was commonly up-regulated in the WT-MOH1 strain as was that of Ynk1 protein, which is known as a marker for DNA damage. Although the enhanced UV resistance of the $moh1{\Delta}$ mutant largely disappeared following transformation with the yeast MOH1 gene or one of the human YPEL1-YPEL5 genes, the transformant bearing pYES2-YPEL5 was more sensitive to lethal UV irradiation and its UV sensitivity was similar to that of the WT-MOH1 strain. Under these conditions, the UV irradiation-induced apoptotic events, such as FITC-Annexin V stainability, mitochondrial membrane potential (${\Delta}{\psi}m$) loss, and metacaspase activation, occurred to a much lesser extent in the $moh1{\Delta}$ mutant compared with the WT-MOH1 strain and the mutant strain bearing pYES2-MOH1 or pYES2-YPEL5. These results demonstrate the functional conservation between yeast Moh1 and human YPEL5, and their involvement in mitochondria-dependent apoptosis induced by DNA damage.

The Bioconversion of Red Ginseng Ethanol Extract into Compound K by Saccharomyces cerevisiae HJ-014

  • Choi, Hak Joo;Kim, Eun A;Kim, Dong Hee;Shin, Kwang-Soo
    • Mycobiology
    • /
    • v.42 no.3
    • /
    • pp.256-261
    • /
    • 2014
  • A ${\beta}$-glucosidase producing yeast strain was isolated from Korean traditional rice wine. Based on the sequence of the YCL008c gene and analysis of the fatty acid composition, the isolate was identified as Saccharomyces cerevisiae strain HJ-014. S. cerevisiae HJ-014 produced ginsenoside Rd, $F_2$, and compound K from the ethanol extract of red ginseng. The production was increased by shaking culture, where the bioconversion efficiency was increased 2-fold compared to standing culture. The production of ginsenoside $F_2$ and compound K was time-dependent and thought to proceed by the transformation pathway of: red ginseng extract ${\rightarrow}Rd{\rightarrow}F_2{\rightarrow}$ compound K. The optimum incubation time and concentration of red ginseng extract for the production of compound K was 96 hr and 4.5% (w/v), respectively.

Effect of Non-homologous Spacing in Target DNA Sequence on the Frequency of Cloning Based Homologous Recombination (Target DNA 염기서열 내에 존재하는 비상동성 간격이 상동성재조합을 이용한 클로닝 빈도에 미치는 영향)

  • Kim Jae-Woo;Do Eun-Ju;Yoon Se-Lyun;Jeong Yun-Hee;Yoon Young-Ho;Leem Sun-Hee;Sunwoo Yangil;Park In-Ho
    • Korean Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.239-245
    • /
    • 2005
  • Transformation-Associated Recombination (TAR) cloning technique allows selective isolation of chromosomal regions and genes from complex genomes. The procedure requires knowledge of relatively small genomic sequences that reside adjacent to the chromosomal region of interest. This technique involves homologous recombination during yeast spheroplast transformation between genomic DNA and a TAR vector that has 5' and 3' gene targeting sequences. In this study, we examined the effect of non-homologous spacing sequence in target hooks on homologous recombination using a plasmid model system. The efficiency of homologous recombination between the modified his3-TRP1-his3 fragments and HlS3 gene on plasmid were analyzed by the characterization of $Ura^+$ transformants. The numbers of $Ura^+$ transformant showed same level when seven different modified his3-TRP1-his3 fragments were used. But the percentage of positive recombinants. $Trp^+His^-$, dramatically decreased when used the modified his3-TRP1-his3 fragments contained incorrect spacing of nonhomologous region. As a result, we suggest that incorrect spacing inhibits the homologous recombination between target hook and substrate DNA. Therefore, we should consider the correct spacing in target hook when the target hook are used for cloning of orthologue gene.

Cloning, Characterization of Pichia etchellsii $\beta-Glucosidase$ II and Effect of Media Composition and Feeding Strategy on its Production in a Bioreactor

  • Sethi Benu;Jain Monika;Chowdhary Manish;Soni Yogesh;Bhatia Yukti;Sahai Vikram;Mishra Saroj
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.1
    • /
    • pp.43-51
    • /
    • 2002
  • The cloning and expression of $\beta-glucosidase$ II, encoded by the gene ${\beta}glu2$, from thermotolerant yeast Pichia etchellsii into Escherichia coli is described. Cloning of the 7.3 kb BamHI/SalI yeast insert containing ${\beta}glu2$ in pUC18, which allowed for reverse orientation of the insert, resulted in better enzyme expression. Transformation of this plasmid into E. coli JM109 resulted in accumulation of the enzyme in periplasmic space. At $50^{\circ}C$, the highest hydrolytic activity of 1686 IU/g protein was obtained on sophorose. Batch and fed-batch techniques were employed for enzyme production in a 14 L bioreactor. Exponential feeding rates were determined from mass balance equations and these were employed to control specific growth rate and in turn maximize cell growth and enzyme production. Media optimization coupled with this strategy resulted in increased enzyme units of 1.2 kU/L at a stabilized growth rate of $0.14\;h^{-l}$. Increased enzyme production in bioreactor was accompanied by formation of inclusion bodies.

Development of a Multicopy Integration Vector in Yarrowia lipolytica (Yarrowia lipolytica의 Multicopy Integration Vector 개발)

  • Kim, Jeong-Yoon;Woo, Moon-Hee;Ryu, Dewey D.Y.
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.5
    • /
    • pp.536-543
    • /
    • 1995
  • Multicopy integration vector is a very useful vector system in that they can be integrated into chromosomal DNA in several copies and stably maintained under non-selective conditions. To develop a multicopy integration vector system in the yeast Yarrowia lipolytica, P-type ribosomal DNA was cloned from Y lipolytica. A HindIII-BglII fragment of the cloned rDNA and a promoterless URA3 gene were inserted into pGEM1, generating multicopy integration vectors, pMIYL-1 and pMIYL-2. The rDNA fragment is for targeted homologous recombination between the vector and the chromosomal DNA of Y. lipolytica, and the promoterless URA3 gene is a defective selection marker for inducing multicopy integration. pMIYL-1 and pMIYL-2 have an unique restriction enzyme site, KpnI, and two unique restriction enzyme sites, KpnI and EcoRI, repectively, which can be used for targeting of the vectors into the rDNA of Y. lipolytica chromosomal DNA. After transformation of the vectors into Y. lipolytica, copy number and stability were analyzed by Southern hybridization. The vectors were found to be present in less than 5 copies per cell and were stably maintained during growth in non-selective media.

  • PDF

Expression of recombinant plasmids harboring glucoamylase gene STA in saccharomyces cerevisiae (Glucoamylase 유전자 STA를 포함한 재조합 플라스미드들의 saccharomyces cerevisiae에서의 발현)

  • 박장서;박용준;이영호;강현삼;백운화
    • Korean Journal of Microbiology
    • /
    • v.28 no.3
    • /
    • pp.181-187
    • /
    • 1990
  • STA gene coding glucoamylase was introduced into haploid Saccharomyces cerevisiae SHY3 and polyploid Saccharomyces cerevisiae 54. We constructed the recombinant plasmid by substituting the promoter region of alcohol dehydrogenase isoenzyme I gene for that of STA gene to increase the expression of STA gene and found that the activity of glucoamylase was increased in transformants. The plasmid stability was improved remarkably when we got the STA gene into the plasmid which had centromere. The activity of glucoamylase and transformation frequency of it, however, was decreased because of low copy number. Industrial polyploid strain was transformed with the recombinant plasmid having the $2\mu$ origin of replication and STA gene. It produced more alcohol than host when fermented in liquefied starch media. The industrial strain, however, was not transformed with the autonomously replicating plasmid containing centromere.

  • PDF

Production of Compaction from Penicillium sp. Y-8515 (Penicillium sp. Y-8515에 의한 Compactin 생산)

  • 박주웅;이주경;권태종;박용일;강상모
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.5
    • /
    • pp.291-297
    • /
    • 2000
  • A strain producing high levels of compaction was isolated from soil and identified as Penicillium sp. Y-8515 based on the morphological characteristics and ribosomal RNA sequence analysis. Optimization of several different carbon and nitrogen sources for the effective production of compaction was performed resulting in the medium compositions containing 5%(w/v) glucose, 1.0 % soybean meal, 0.5% yeast extract, 0.5%(NH$_4$)$_2$$SO_4$, 0.25%,$ NaH_2$$PO_4$, 0.25% $CaCO_3$. The fixed con-centration of glucose(5%, w/v) and relatively lower concentrations(less than 2.5%, w/v) of soybean meal stimu-lated the transformation of the growth morphology from filamentous to pellet form. Comparing to that by filamentous form, the production of compactin by pellet form increased up to 1.5 folds. In a fed-batch fermentation, continuous feeding of the mixture of glucose and nitrogen source at the ratio of 10:1 showed 3.5-fold more produc-tion yield of compaction comparing to the batch mode.

  • PDF

Cloning of a Gene Involved in Biosynthesis of ${\beta}-1,3-glucan$ in Saccharomyces cerevisiae (베타-1,3-글루칸 생합성에 관여하는 Saccharomyces cerevisiae 유전자의 클로닝)

  • Jin, Eun-Hee;Lee, Dong-Won;Kim, Jin-Mi;Park, Hee-Moon
    • The Korean Journal of Mycology
    • /
    • v.23 no.2 s.73
    • /
    • pp.129-138
    • /
    • 1995
  • DNA fragment being able to restore in vitro activity of ${\beta}-1,3-glucan$ synthase was cloned by transformation of the Saccharomyces cerevisiae LP353 mutant strain with genomic library constructed in the YCp50. For the selection of transformants which showed no detectable phenotype linked to recovery of the defect in ${\beta}-1,3-glucan$ synthase activity, the colony autoradiography was succesfully applied. The restriction map of the cloned DNA fragment, which is 8.5-kb in length, was constructed. Both the YEplac195 and the YCp50 carrying the 8.5-kb fragment increased ${\beta}-1,3-glucan$ synthase activity of LP353 by two fold. Neither the YEplac195 nor the YCp50 carrying the 8.5-kb DNA fragment, however, complemented the temperature-dependent osmotic sensitivity which is another distinctive phenotype of LP353. Subcloning experiments indicated that a functional region was located in 4.8-kb BglII-KpnI fragment. The 4.8-kb fragment was also able to increase the level of ${\beta}-1,3-glucan$ content in cell wall as well as the resistance of cells to cell wall lytic enzyme, ${\beta}-1,3-glucanase$. The growth rate of the LP353 with 4.8-kb fragment was almost same as that of wild type strain in liquid medium with 1.2 M sorbitol at nonpermissive temperature. Taken these results together, the 4.8-kb fragment seemed to contain the BGS2 gene for ${\beta}-1,3-glucan$ synthase activity in yeast S. cerevisiae.

  • PDF

Characterization of Achlya bisexualis $\beta$-Amylase Expression in an Amylolytic Industrial Strain of Saccharomyces cerevisiae (전분 분해성 산업용 Saccharomyces cerevisiae에서 Achlya bisexualis $\beta$-Amylase의 발현 특성 규명)

  • Lee, Ok-Hee;Lim, Mi-Hyeon;Kim, Ji-Hye;Ryu, Eun-Hye;Ko, Hyun-Mi;Chin, Jong-Eon;Bai, Suk
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.264-269
    • /
    • 2008
  • To develop an amylolytic industrial yeast strain producing $\beta$-amylase, the BAMY gene encoding Achlya bisexualis $\beta$-amylase was constitutively expressed under the control of the alcohol dehydrogenase gene promoter (ADC1p) in an industrial strain of Saccharomyces cerevisiae. Yeast transformation was carried out by an integration system containing $\delta$-sequences as the recombination site. The integrative cassette devoid of bacterial DNA sequences was constructed that contains the BAMY gene and $\delta$-sequences. Industrial S. cerevisiae transformed with this integrative cassette secreted 45 kDa $\beta$-amylase into the culture medium. The $\beta$-amylase activity of the transformant was approximately 18.5-times higher than that of A. bisexualis. The multi-integrated BAMY genes in the transform ant were stable after 100 generations of growth in nonselective medium. Hydrolysis of soluble starch and various starches with the enzyme released maltose but not glucose or oligosaccharides.