• Title/Summary/Keyword: Yeast secretory expression vector

Search Result 5, Processing Time 0.021 seconds

Construction of a Secretory Expression Vector Producing an $\alpha$-Amylase of Yeast, Schwanniomyces occidentalis in Saccharomyces

  • Shin, Dong-Jun;Park, Jong-Chun;Lee, Hwanghee-Blaise;Chun, Soon-Bai;Bai, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.625-630
    • /
    • 1998
  • Using a modified yeast secretory expression vector, $\alpha$-amylase of Schwanniomyces occidentalis was produced from Saccharomyces cerevisiae. The expression vector contains the a-amylase gene (AMY) harboring its own promoter without the regulatory region and the adenine base at the -3 position from the ATG start codon, its own signal sequence, CYC1 transcription terminator, and SV40 enhancer. The expressed $\alpha$-amylase activity from cells carrying the plasmid was approximately 26 times higher than that from the cells harboring an unmodified plasmid. When Saccharomyces diastaticus was transformed with this modified vector, a 2.5 times higher level of amylolytic activity than that from Sch. occidentalis was observed.

  • PDF

Expression and Secretion of Heterologous Protein in Yeast

  • Kim, Moo-Kyum;Song, Moo-Young;Yu, Myeong-Hee;Yu, Myeong-Hee;Park, Hee-Moon;Kim, Jinmi
    • Korean Journal of Microbiology
    • /
    • v.30 no.2
    • /
    • pp.108-112
    • /
    • 1992
  • To investigate the expression and the secretion of heterologous proteins in yeast, we constructed an yeast secretion vector and produced a human secretory protein, .alpha.-1-antitrypsin (.alpha.-1-AT), from yeast cells. The secretion vector pGAT8 was constructed by inserting the signal sequence of yeast acid phosphatase gene (PH05) into the .alpha.1-AT expression vector pGAT6 which contained .alpha.-1-AT cDNA fused to GAL10-CYC1 promotor. The .alpha.-1-AT was produced efficiently in the yeast cells transformed with plasmid pGAT8, which was onfirmed both by the .alpha.-1-AT activity assay and by the immunoblot method using .alpha.-1-AT antibody. We also showed the secretion of .alpha.-1-AT into the culture media and into the periplasmic space by immunoblot.

  • PDF

Expression and Secretion of Human Serum Albumin in the Yeast Saccharomyces cerevisae

  • Kang, Hyun-Ah;Jung, Moon-Soo;Hong, Won-Kyoung;Sohn, Jung-Hoon;Choi, Eui-Sung;Rhee, Sang-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.42-48
    • /
    • 1998
  • In order to maximize the secretory expression of human serum albumin (HSA) in the yeast Saccharomyces cerevisiae, a series of HSA expression vectors were constructed with a combination of different promoters, 5' untranslated regions (5'UTR), and secretion signal sequences. The expression vector composed of the galactose-inducible promoter GALl0, the natural 5'UTR, and the natural signal sequence of HSA directed the most efficient expression and secretion of HSA among the constructed vectors when introduced into several S. cerevisiae strains. Although the major form of HSA expressed and secreted in the yeast transformants was the mature form of 66 kDa, the truncated form of 45 kDa was also detected both in the cell extract and in the culture supernatant. The level of the intact HSA protein in the culture supernatant reached up to 30 mg/l at 24 h of cultivation in a shake-flask culture but began to decrease afterwards, indicating that the secreted HSA protein was unstable in a prolonged culture of yeast.

  • PDF

Secretion of Active Urokinase-type Plasminogen Activator from the Yeast Yarrowia lipolytica

  • Ryu, Ho-Myoung;Kang, Woo-Kyu;Kang, Hyun-Ah;Kim, Jeong-Yoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.162-165
    • /
    • 2003
  • In order to study the secretion of the human urokinase-type plasminogen activator, u-PA, from the yeast yarrowia lipolytica, three kinds of integrative expression vector were constructed. These vectors differed only in their secretion control legions, pre-, pre-dip-(dipeptide Stretch) or pre-dip-pro sequences of the alkaline extracellular protease, which were joined inflame to the human u-PA cDNA. The recombinant Y. lipolytica Strains, transformed with the expression vectors, secreted the hyperglycosylated u-PA. A fibrin plate assay of the culture supernatants showed that the hyperglycosylated u-PA proteins could catalyze fibrinolysis, and that the pre-dip sequence was the most efficient secretory signal for the secretion of the u-PA from Y. lipolyica. This result suggests that Y. lipolytica can be developed as a potential host for the production of recombinant human u-PA.

Secretory Overexpression of Clostridium Endoglucanase A in Saccharomyces cerevisiae Using GAL10 Promoter and Exoinulinase Signal Sequeice. (Saccharomyces cerevisiae에서 GAL 10 promoter와 exoinulinase 분비 서열을 이용한 Clostridium endoglucanase A의 과발현·분비)

  • Lim, Myung-Ye;Lee, Jin-Woo;Lee, Jae-Hyung;Kim, Yeon-Hee;Seo, Jin-Ho;Nam, Soo-Wan
    • Journal of Life Science
    • /
    • v.17 no.9 s.89
    • /
    • pp.1248-1254
    • /
    • 2007
  • The secretory overexpression of Clostridium thermocellum endoglucanase A gene (celA) was examined in Saccharomyces cerevisiae using Kluyveromyces marxianus exoinulinase (INU1) signal sequence and GAL10 promoter. The two plasmids, pYEG-CT1 with its own signal sequence, and pYInu-CT1 with INU1 signal sequence were introduced to S. cerevisiae SEY2102 and S. cerevisiae 2805 host strains, respectively, and then each transformant was selected on the synthetic defined media lacking uracil. The expression level and secretion efficiency of endoglucanase A was increased by $18{\sim}22%$ and 11%, respectively, by INU1 signal sequence over celA signal sequence. By considering the high level of expression (361 unit/I), plasmid stability (89%), and secretion efficiency (70%), S. cerevisiae 2805 harboring plasmid pYInu-CT1 was selected as the opti-mal host vector system for the production of cellulose-degrading enzyme and recombinant yeast probiotic. The total expression and secretion efficiency of endoglucanase A was 418 unit/l and 73%, respectively, in the batch fermentation of S. cerevisiae 2805/pYlnu-CT1 on galactose medium. The mo-lecular weight of secreted endoglucanase A was found to be greater than 100 kDa, presumably due to the N-linked glycosylation.