• Title/Summary/Keyword: Yeast function complementation

Search Result 13, Processing Time 0.016 seconds

Functional Analysis of the Putative BUB2 Homologues of C. elegans in the Spindle Position Checkpoint

  • Lee, Kyung-Hee;Song, Ki-Won
    • Animal cells and systems
    • /
    • v.9 no.2
    • /
    • pp.87-94
    • /
    • 2005
  • Spindle position checkpoint monitors the orientation of mitotic spindle for proper segregation of replicated chromosomes into mother cell and the daughter, and prohibits mitotic exit when mitotic spindle is misaligned. BUB2 forms one of the key upstream element of spindle position checkpoint in budding yeast, but its functional homologues have not been identified in higher eukaryotes. Here, we analyzed the functions of two putative BUB2 homologues of C. elegans in the spindle orientation checkpoint. From the C. elegans genome database, we found that two open reading frames (ORFs), F35H12_2 and C33F10_2, showed high sequence homology with BUB2. We obtained the expressed sequence tag (EST) clones for F35H12_2 (yk221d4) and C33F10_2 (yk14e10) and verified the full cDNA for each ORF by sequencing and 5' RACE with SL1 primer. The functional complementation assays of yk221d4 and yk14e10 in ${\Delta}bub2$ of S. cerevisiae revealed that these putative BUB2 homologues of C. elegans could not replace the function of BUB2 in spindle position checkpoint and mitotic exit. Our attempt to document the component of spindle position checkpoint in metazoans using sequence homology was not successful. This suggests that structural information about its components might be required to identify functional homologues of the spindle position checkpoint in higher eukaryotes.

Cucumber Mosaic Virus 1a Protein Interacts with the Tobacco SHE1 Transcription Factor and Partitions between the Nucleus and the Tonoplast Membrane

  • Yoon, Ju-Yeon;Palukaitis, Peter
    • The Plant Pathology Journal
    • /
    • v.37 no.2
    • /
    • pp.182-193
    • /
    • 2021
  • The transcription factor SHE1 was identified as an interacting partner with the cucumber mosaic virus (CMV) 1a protein in the yeast two-hybrid system, by a pull-down assay, and via bimolecular fluorescent complementation. Using fluorescent-tagged proteins and confocal microscopy, the CMV 1a protein itself was found distributed predominantly between the nucleus and the tonoplast membrane, although it was also found in speckles in the cytoplasm. The SHE1 protein was localized in the nucleus, but in the presence of the CMV 1a protein was partitioned between the nucleus and the tonoplast membrane. SHE1 expression was induced by infection of tobacco with four tested viruses: CMV, tobacco mosaic virus, potato virus X and potato virus Y. Transgenic tobacco expressing the CMV 1a protein showed constitutive expression of SHE1, indicating that the CMV 1a protein may be responsible for its induction. However, previously, such plants also were shown to have less resistance to local and systemic movement of tobacco mosaic virus (TMV) expressing the green fluorescent protein, suggesting that the CMV 1a protein may act to prevent the function of the SHE1 protein. SHE1 is a member of the AP2/ERF class of transcription factors and is conserved in sequence in several Nicotiana species, although two clades of SHE1 could be discerned, including both different Nicotiana species and cultivars of tobacco, varying by the presence of particular insertions or deletions.

Characterization of RAD3 Homologous Gene from Coprinus cinereus (균류 Coprinus cinereus에서 DNA 회복에 관여하는 RAD3 유사유전자의 분리와 특성)

  • Choi In Soon
    • Journal of Life Science
    • /
    • v.14 no.6 s.67
    • /
    • pp.1023-1027
    • /
    • 2004
  • The RAD3 gene of Saccharomyces cerevisiae is essential for the incision step of UV-induced excision repair. An yeast RAD3 gene has been previously isolated by functional complementation. In order to identify the RAD3 homologous gene from fungus Coprinus cinereus, we have constructed cosmid libraries from electrophoretically separated chromosomes of the C. cinereus. The 13 C. cinereus chromosomes were resolved by pulse-field gel electrophoresis, hybridized with S. cerevisiae RAD3 DNA, and then isolated RAD3 homologous DNA from C. cinereus chromosome. The RAD3 homolog DNA was contained in 3.2 kb DNA fragment. Here, we report the results of characterization of a fungus C. cinereus homolog to the yeast RAD3 gene. Southern blot analysis confirmed that the C. cinereus chromosome contains the RAD3 homolog gene and this gene exists as a single copy in C. cinereus genome. When total RNA isolated from the C. cinereus cells were hybridized with the 3.4 kb PvuII DNA fragment of the S. cerevisiae RAD3 gene, transcripts size of 2.8 kb were detected. In order to investigate whether the increase of the amount of transcripts by DNA damaging agent, transcript levels were examined after treating agents to the cells. The level of transcripts were not increased by untraviolet light (UV). This result indicated that the RAD3 homologous gene is not UV inducible gene. Gene deletion experiments indicate that the HRD3 gene is essential for viability of the cells and DNA repair function. These observations suggest an evolutionary conservation of other protein components with which HRD3 interacts in mediating its DNA repair and viability functions.