• Title/Summary/Keyword: Year on year degradation

Search Result 130, Processing Time 0.028 seconds

Evaluation of Service life for a Filament Wound Composite Pressure Vessel (필라멘트 와인딩 복합재 압력용기의 구조 수명 평가)

  • Hwang, Tae-Kyung;Park, Jae-Byum;Kim, Hyoung-Geun;Doh, Young-Dae
    • Composites Research
    • /
    • v.21 no.6
    • /
    • pp.23-30
    • /
    • 2008
  • In this paper, the effect of the natural aging on the strength distribution and structural service life of a Filament Wound (FW) composite pressure vessel was studied. The fiber failure strain, which is varied significantly, was considered as the design random variable and the strength analysis was carried out by probabilistic numerical approach. The progressive failure analysis technique and the First Order Reliability Method (FORM) were embedded in this numerical model. As the calculation results, the probability of failure was obtained for each aging time steps and it is found that the strength degradation in FW composite pressure vessel, due to the natural aging, appears within 10 year-aging-time. As an example of the life prediction under natural aging using arbitrary laminated model, the service lifetime of 13 years was predicted based on the probability of failure of 2.5% and the design pressure of 3,250 psi.

Natural Aging Effect on the Fiber Tensile Strength of Carbon Epoxy Pressure Vessel (자연 노화에 따른 카본 에폭시 압력용기의 섬유 인장 강도 변화)

  • Hwang, Tae-Kyung;Park, Jae-Byum;Kim, Hyoung-Geun;Doh, Young-Dae
    • Composites Research
    • /
    • v.20 no.2
    • /
    • pp.1-9
    • /
    • 2007
  • To evaluate and investigate the aging characteristics and the structural service lifetime of the CFV(carbon fiber pressure vessel), natural aging tests were carried out using the CFVs, which had been placed and aged at outdoor and indoor laboratories for 10 and 15 years, respectively. To obtain the probabilistic characteristics of ageing characteristics in aged CFVs, inner pressure loading test was conducted with ring specimens taken from aged CFVs. And, to observe the interface morphology of aged CFVs, the micro-photographs were taken by SEM microscope and the fractured interfaces between the carbon fiber and the matrix resin were scrutinized. Based on the Weibull parameters of the tensile failure strain of aged CFVs, the degradation of the 10 and the 15 year aged CFV occur by 19% and 23%, respectively, and the effect of the placement, whether being placed inside the laboratory or not, is not so significant. However, the outer layer protection, such as painting, is found very advantageous to prevent CFV from aging.

A Review of the Physical Performance of Lightweight Aerated Concrete for Use as an Interior Core Material in Fire Doors (방화문 내부 심재로 적용하기 위한 경량기포콘크리트의 물리적 성능 검토)

  • Hong, Sang-Hun;Kim, Bong-Joo;Jung, Ui-In;Kim, Hae-Nah;Park, Jun-Seo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.111-112
    • /
    • 2023
  • With the development of cities, the density of the population is continuously increasing as buildings become larger and more high-rise, but since the Haeundae residential complex fire in Busan in 2010, there has been a growing need to meet the fire protection performance of buildings as large-scale fires continue to occur every year. On the other hand, fire doors, which are one of the fire protection performance of buildings, have been judged unqualified in 82% of cases when fire doors constructed on the actual site were inspected after completion. The reason for this is that paper honeycomb and glasswool, which are used as core materials for fire doors, absorb moisture, reducing thermal insulation performance, and sagging due to increased weight, leading to performance degradation due to warping in empty spaces. To overcome these problems, research is underway to apply lightweight aerated concrete, an inorganic material, as a core material. Therefore, in order to select a blowing agent that produces stable bubbles prior to the production of lightweight bubble concrete for application as a fire door inner core, this study examined the physical performance according to the type of blowing agent and dilution concentration, and the following conclusions were drawn. Compared to vegetable bubbles and independent bubbles, synthetic bubbles have 3~8% higher thermal conductivity than independent bubbles, but 3~6% lower slurry density than vegetable bubbles, and 2~13% higher compressive strength, which is thought to be an improvement of synthetic bubbles.

  • PDF

A Study on Organic Sludge Application and Duration Estimate for Treating Natural Purification of Acidic Mine Drainage (폐탄광폐수의 자연정화처리를 위한 유기성슬러지 적용 및 지속시간예측에 관한 연구)

  • Kim, Eun-Ho;Kim, Hyeong-Seok;Sung, Nak-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.475-484
    • /
    • 2000
  • The purpose of this study was to develop model for estimating biodegrability of organic sludge (sewage and papermill) in various environmental conditions. to assume degradable degree with operating time of SRB reactor. and evaluate duratior of organic sludge as carbon source. Average TCOD was 28.7~63.2mg/L in effluent. organic sludge did not much supply carbon source for experimental period. But in point of durability. it seemed that organic sludge was efficient because it was not consumed by degradation of much organic matter within short period. With increasing $SO_4{^{2-}}$ reduction rate. Pb and Fe was removed 77~82% and 33~59%. respectively. Because Al was precipitated as a hydroxide. its removal rate wa,. about $54{\pm}2%$ in R-l~R-3 maintaining low pH but about 78% in R-4 maintaining high pH. Because Mn was large in solubility. it showed to be much lower than other heavy metals. Considering supportable capacity or durability of orgainc matter for initial SRB mixing ratio of sewage/papermill 0.5 was regarded as appropriate substituting material and at this time. it estimated that carbon source continued about 3.08 year but safety factor must apply to be thought over. because various factors had an effect on degradation of organic sludge.

  • PDF

Forest Degradation and Spatial Distribution of Forest Land Development (산지개발의 공간분포와 산림훼손)

  • Yu, Jaeshim;Choi, Wontae;Lee, Sanghyuk;Choi, Jaeyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.6
    • /
    • pp.101-110
    • /
    • 2016
  • Development activities in forest areas are analysed based on degree of slope, altitude, land cover, and prefectures in order to improve the capacity of existing regulations of 'feasibility of forest land conversion' and 'assessment of forest land characteristics' in this research. 959 land based developments between year 2007 and 2013 have been analysed. A development site includes over 50% of forest is categorized as a forest type, degree of slope is steeper than $8.5^{\circ}$ as mountain type, and a development included in the both categories as combined type. Distribution characteristics of the above three types are analysed by development categories and regions adopting Relative Mountain Development Index(RMDI). In results, 44.94% of total development activities have been carried out in Gyeongsang Do in order of urban development, industrial complex, sports facilities, and soil and stone collection quarrying. Developments less than $0.3km^2$ which are exempt from the feasibility of forest land conversion regulation consist 86 cases of forest type, 78 cases in mountain type, and 78 cases in combined type. SAI by slope range showed the highest value of 1.55 in less than $5^{\circ}$ and the lowest value of 0.69 between $20^{\circ}-25^{\circ}$. RMDI value in Gyeongsang Do where mountain ratio is 67.05% appeared 1.17, which is 5 times more than Gangwon Do where mountain area ratio is 81.30%, and 2 times more than Chungchung Do where mountain area ratio is 51.24%. Development activities in forestland in Korea showed unequal distributions and 26% of those developments were not subjected to the feasibility of forest land conversion regulation.

A Comparative Study on Management Evaluation and Re-certification System of G-SEED, BREEAM, LEED (국내외 녹색건축인증제의 유지관리 및 재인증 제도에 대한 비교 연구)

  • Hyun, Eun Mi;Kim, Yong Sik
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.121-129
    • /
    • 2014
  • As time passes, the aging of the plant building, the building's energy performance degradation than the initial plan does not express a situation could arise. This year, the certification of buildings certified in 2009 has expired for measures such as the situation required. In this study, management of national and international green building certification and re-certification was compared in two ways. First, the evaluation of green building certification system management assessments were compared. Second, the green building certification system for the re-certification analysis. As a result, G-SEED was not reflected life-cycle of building in management assessment and the commissioning of G-SEED is the UK and the U.S and other concepts of evaluation. In addition, the re-certification system is insufficient about substantial energy consumption of buildings. In this study, the revised the management assessments in conjunction with the re-certification system to manage the building is proposed to improve. In addition, the current evaluation of the existing building certification "existing building" and "building the first certified" as it is more efficient to separate the information into assessment was judged. Green building certification system to meet the purpose of management and operation, and disposal phases of the building to promote energy conservation and sustainability in order to the management a systematic and detailed evaluation and re-certification system developed for the revision of the specific items required and future research want to continue.

A Study of Application on Waste Tire Blocks Filled with Concrete (폐타이어 콘크리트 블록의 활용 방안에 관한 연구)

  • Shinl, Eun-Chul;Lee, Chang-Sub
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.2
    • /
    • pp.25-31
    • /
    • 2003
  • Most recently, environmental problems arise from management waste tires by increasing number of automobiles. Waste tires are not compressible and not easy for degradation in landfill. Even if it were landfill, it is difficult to treat. Total amount of waste tires is about 20 million per year and the collection is 68.6% in this country. Structure of slope stability using waste tire blocks filled with concrete increases durability, reduce construction period, and it can be utilized as an example. Therefore, it reduces the volume of waste and recycles waste. Also, it prevents the air pollution due to the incineration and creates economic value.

  • PDF

The Cooperative Environmental Research in the Yellow Sea between Korea and China for the Establishment of Cooperative Management Plans on the Yellows Sea Conservation (황해 공동 관리시스템 기반 조성을 위한 한.중 황해환경공동조사)

  • Heo, Seung;An, Kyoung-Ho;Park, Soung-Yun;Park, Jong-Soo;Kang, Young-Shil;Shon, Jaek-Young;Kim, Pyoung-Joong;Kim, Hyung-Chul;Hwang, Woon-Ki;Lee, Seung-Min;Hwang, Hak-Jin;Choi, Yong-Suk;Ko, Byeong-Seol;Bang, Hyun-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.3
    • /
    • pp.263-268
    • /
    • 2009
  • The Yellow Sea is extremely important to the economy and to the health and well-being of surrounding countries, Korea and China. Recently, the Yellow Sea is under constantly increasing threat of degradation due to the increase of environmental pollution and over-fishing. The governments of Korea and China have been aware of the importance of the Yellow Sea and reached an Environmental Agreement between Korea and China at the governmental level(November, 1993) According to this environmental agreement the Yellow Sea Environmental Cooperative Research between Korea and China has been undertaken since 1997. The joint cruise had been conducted once a year at 33 stations in the 4 lines of the Yellow Sea where the 9 stations of the D line was newly added in the 7th cruise in 2003. The samples were analyzed by scientists of both countries at the WSFRI, Korea and the OEMNC of the SEPA, China in turn, the annual report has been published every year during 1998-2008. The scientific efforts to fix the cruise time in October and to extend research frequency, as twice a year, should be considered, and this requires the governmental supports such as research funds and other related administrational assistance on both sides. Finally, scientists should also pay a concentrated attention to standardize the analytical methods including quality control and to improve this Yellow Sea research as one of the most representative international projects in the Yellow Sea where sharing additional informations available, if exist of dumping sites and material content, and of the freshwater quality will be of great help to broaden the output of this joint research project.

  • PDF

Study on VOCs Emission Characteristic of Taxidermied Mounting Techniques (박제표본 제작방법에 따른 휘발성유기화합물 방출 특성 연구)

  • OH Jungwoo;CHUNG Yongjae
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.2
    • /
    • pp.136-146
    • /
    • 2023
  • Biological materials, such as stuffed specimens, can release various acids or volatiles. There has been no research carried out on the emission characteristics of organic compounds generated from the preservatives used in taxidermy specimens or associated manufacturing materials and methods. Therefore, in order to identify the organic compounds generated from taxidermy specimens, a degradation experiment was conducted on specimens for each material and for storage specimens. To produce Ogye chicken specimens, naphthalene and borax were used as preservatives, and planer sawdust, newspaper, and polystyrene foam were used as the core body materials. The deterioration experiment was conducted for 2 weeks in a high-temperature environment(50℃) and a high-humidity environment (95%), with an Ogye chicken specimen (year 2015) kept in an animal storage facility. Results indicated that the concentration of organic compounds generated by the specimen in the high-temperature environment tended to be greater than that in the high-humidity environment. The preservatives benzene, toluene, xylene, and p-dichlorobenzene were detected in the specimens using naphthalene, confirming that naphthalene is a major organic compound release factor, and the specimens that used sawdust, newspaper, and polystyrene foam also exhibited organic compounds. This appears to have been due to degradation of the material. In addition, ammonia was detected in the specimens for each material due to decay. In particular, the specimens using borax at high temperature were subject to approximately 9 times higher rates of ammonia-related deterioration than the specimens using naphthalene. These results can be considered to result from the prevention of biological damage through insecticidal effects by accelerating the sublimation of naphthalene in a high-temperature environment. Naphthalene is a potentially carcinogenic substance, and when used as a preservative, proper use management is required. Taxidermy specimens can release various organic compounds depending on the manufacturing techniques used, so a systematic preservation management plan is required that depends on conditions such as the applicable manufacturing materials and preservatives.

A Study on the Lining Stability of Old Tunnel Using Groundwater Flow Modelling and Coupled Stress-Pore Water Pressure Analysis (지하수 유동과 응력-간극수압 연계 해석을 통한 노후터널의 라이닝 안정성 분석)

  • Kim, Bum-Joo;Jung, Jae-Hoon;Jang, Yeon-Soo;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.101-113
    • /
    • 2012
  • The degradation of a tunnel drainage system leads to increases in pore water pressure around the tunnel and the lining stress, which results in affecting the tunnel stability. In the present study of the Namsan 3th tunnel, more than 30 year old tunnel, the effects of the drainage performance reduction due to drain hole clogging on the tunnel lining stability were investigated by examining pore water pressure distribution around the tunnel and the lining stresses through numerical analysis. Groundwater flow modeling on the Mt. Namsan region was done first and 3D seepage and coupled stress-pore water pressure finite element analysis were performed on the tunnel using the results of the groundwater flow modeling. The pore water pressure distribution and the tunnel lining stresses could be predicted using a drain hole outflow data measured in the tunnel site. This analysis method may be used to evaluate the current stability of old tunnels for which in most cases field investigations and related information are not readily available.