• Title/Summary/Keyword: Yawed Delta Wing

Search Result 6, Processing Time 0.019 seconds

Computational Study of the Vortical Flow over a Yawed LEX-Delta Wing at a High-Angle of Attack (고영각 Yawed LEX-Delta 익에서 발생하는 와유동의 수치해석)

  • Kim, Tae-Ho;Kweon, Yong-Hun;Kim, Heuy-Dong;Sohn, Myong-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2109-2114
    • /
    • 2003
  • The vortex flow characteristics of a yawed LEX-delta wing at a high-angle of attack are studied using a computational analysis. The objective of the present study is to investigate and visualize the effects of the yaw angle, the development and interaction of vortices, the relationship between the suction pressure distributions and the vortex flow characteristics. Computations are applied to the three dimensional, compressible, Navier-Stokes Equations. In computations, the yaw angle is varied between 0 and 20 degree at a high-angle of attack. Computational predictions are compared with the previous experimental results.

  • PDF

Observation of the Vortex Interaction over an Yawed Delta Wing with Leading Edge Extension by Flow Visualization and 5-hole Probe Measurements (가시화와 5공 프로브 측정을 통한 연장된 앞전을 갖는 편요된 델타형 날개에서의 와류 상호작용 관찰)

  • Sohn, Myong-Hwan;Lee, Ki-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.388-393
    • /
    • 2001
  • An experimental study is conducted to investigate the interaction of vortices over a delta wing with leading edge extension(LEX) through the off-surface flow visualization and the 5-hole probe measurements of the wing wake region. Especially, the application of a new visualization technique is employed by ultrasonic humidifier water droplet and laser beam sheet. The results, both the off-surface visualization and the 5-hole probe, show that LEX tends to stabilize the vortices of the delta wing up to the high angle of attack even though the model is yawed. With increasing yaw, the windward leading edge vortex moves inward, and closer to the wing surface, while the leeward vortex moves outwards and away from the wing surface. The vortex interaction is promoted in the windward side, and is delayed in the leeward side.

  • PDF

An Investigation of the Vortical Flow Characteristics over a Yawed Delta Wing with LEX at High Incidence (연장된 앞전을 갖는 편요된 삼각날개의 높은 받음각에서의 와류 특성에 관한 연구)

  • Lee, Ki-Young;Sohn, Myong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.105-112
    • /
    • 2002
  • An experimental study of the vortical flow characteristics around a yawed delta wing with the leading edge extension at high incidence angle is undertaken by upper surface pressure measurements. A special emphasis has been put on analyzing the basic physics of vortical flows, concerning the effects of incidence and sideslip angle on the aerodynamic characteristics of the wing, especially under high angle of attack. The experimental data has been dearly demonstrated the beneficial effect of the LEX vortex on the wing vortex. It leads to an essential stabilization of the wing vortex against its breakdown until at much higher incidence angle under small sideslip. An interesting flow feature is occurrence of the rolling moment reversal at a certain range of angle of attack and sideslip angle.

Vortical Flows over a LEX-Delta Wing at High Angles of Attack

  • Lee, Young-Ki;Kim, Heuy-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2273-2283
    • /
    • 2004
  • The vortical flows over sharp-edged delta wings with and without a leading edge extension have been investigated using a computational method. Three-dimensional compressible Reynolds-averaged Navier-Stokes equations are solved to provide an understanding of the effects of the angle of attack and the angle of yaw on the development and interaction of vortices and the aerodynamic characteristics of the delta wing at a freestream velocity of 20 m/s. The present computations provide qualitatively reasonable predictions of vortical flow characteristics, compared with past wind tunnel measurements. In the presence of a leading edge extension, a significant change in the suction pressure peak in the chordwise direction is much reduced at a given angle of attack. The leading edge extension can also stabilize the wing vortex on the windward side at angles of yaw, which dominates the vortical flows over yawed delta wings.

Effect of Centerbody on the Vortex Flow of a LEX-Delta Wing Configuration (중앙동체가 LEX-삼각날개 형상의 와류에 미치는 영향)

  • Sohn, Myong-Hwan;Chung, Hyoung-Seog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.9-17
    • /
    • 2005
  • An experimental study of the vortical flow over a yawed delta wing with leading edge extension(LEX) was conducted to investigate the effects of the existence of a centerbody configuration on the flow characteristics of the wing and LEX vortices using off-surface visualization and PIV measurements. The qualitative investigation using these two techniques indicated that the effect of the centerbody existence on the vortex formation was minimal at somewhat low range of angles of attack and sideslip angles. However, the quantitative analysis of the surface pressure measurements revealed the effect of centerbody existence to be prominently increased for the cases with higher angles of attack and sideslip angles. It was also found that the centerbody effect was not significant compared to the effect of sideslip for the present LEX-delta wing configuration.