• Title/Summary/Keyword: Yaw Mark

Search Result 6, Processing Time 0.027 seconds

Analysis of Uncertainties in Estimation of Critical Speeds from Tire Yaw Marks (타이어 요마크로부터 임계속도 추정의 불확실성 해석)

  • Han, Inhwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.361-370
    • /
    • 2015
  • There will inevitably be errors and uncertainties in tire yaw mark related critical speed formula, which is derived merely from the relationship between the centrifugal force and the friction force acting on the point-mass vehicle. Constructing and measuring yaw marks through appropriate simulation works have made it possible to perform uncertainty analysis in calculation of critical speeds under variation of variety of conditions and parameters while existing yaw mark experimental tests have not performed properly. This paper does not present only the critical speed analysis results for parametric sensitivity and uncertainty of chord and middle ordinate, coefficient of friction and road grade, but also modeling uncertainty such as variation of braking level during turning and vehicle size. The yaw mark analysis methods and results may be now applied in practice of traffic accident investigation.

Implementation of Smart Traffic Safety Systems using Fuzzy Theory

  • Han, Chang Pyoung;Hong, You Sik
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.71-82
    • /
    • 2020
  • Traffic accidents due to excessive speed frequently occur in places where traffic signal controllers are installed, places where sharp curves exist, or places where the traffic signal cycle does not match the current time. These traffic accidents cause economic loss due to the destruction of road facilities and structures, and cause a big problem of increasing the number of traffic accident deaths. When a traffic accident occurs, leaving a tire mark before or after a car crash, pre-collision speed of the car is calculated using the law of conservation of momentum or the skid mark formula. In the skip skid mark generated in ABS brake vehicles and the combshaped yaw mark generated by tire trace caused by lateral sliding, there is a difference of 30-40% in the reliability of the vehicle speed calculated by the smite mark. In this paper, we propose an algorithm that can improve the calculation reliability in vehicle speed by using skid marks in order to compensate for this problem. In addition, we present an intelligent speed calculation algorithm for traffic safety and a computer simulation in order to prevent traffic accidents by estimating the speed of a vehicle, using Skid marks, Yaw marks, and ABS brake characteristics and fuzzy rules.

Accident reconstruction using yaw mark analysis (요마크 분석을 통한 사고 재구성)

  • 하정섭;이승종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.443-446
    • /
    • 2002
  • A vehicle oversteered or cornering at excessive speed leaves tire yaw mark on the road surface. A yaw mark is a sign that the tire was sideslipping and exceeded its frictional limit because of centrifugal force. Problems exist with the traditional equation, “critical speed formula (CSF)”, that limits its practical use in traffic accident reconstruction. A major problem is that the equation dose not account for vehicle dynamics and interface between tire and road. The literature refers to that the accuracy of the critical speed formula varies with several factors. New equations that account for vehicle dynamics are introduced in this paper. A comparison of the accuracy of the new method and the traditional method in the calculation of speed is conducted.

  • PDF

The Vehicle Accident Reconstruction using Skid and Yaw Marks (스키드마크 및 요마크를 이용한 차량사고재구성)

  • 이승종;하정섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.55-63
    • /
    • 2003
  • The traffic accident is the prerequisite of the traffic accident reconstruction. In this study, the traffic accident (forward collision) and traffic accident reconstruction (inverse collision) simulations are conducted to improve the quality and accuracy of the traffic accident reconstruction. The vehicle and tire models are used to simulate the trajectories for the post-impact motion of the vehicles after collision. The impact dynamic model applicable to the forward and inverse collision simulations is also provided. The accuracy of impact analysis for the vehicular collision depends on the accuracy of the coefficients of restitution and friction. The neural network is used to estimate these coefficients. The forward and inverse collision simulations for the multi-collisions are conducted. The new method fur the accident reconstruction is proposed to calculate the pre-impact velocities of the vehicles without using the trial and error process which requires the repeated calculations of the initial velocities until the forward collision simulation satisfies with the accident evidences. This method estimates the pre-impact velocities of the vehicles by analyzing the trajectories of the vehicles. The vehicle slides on a road surface not only under the skidding during an emergency braking but also under the steering. A vehicle over steering or cornering with excessive speed loses the traction and leaves tile yaw marks on the road surface. The new critical speed formula based on the vehicle dynamics is proposed to analyze the yaw marks and shows smaller errors than ones of the existing critical speed formula.

A Study on the Cause Analysis of Traffic Accident from Beginning Aspects of Yaw Mark (요-마크 생성초기 형상을 이용한 교통사고 원인규명 고찰)

  • 정헌영
    • Proceedings of the KOR-KST Conference
    • /
    • 1998.10a
    • /
    • pp.382-388
    • /
    • 1998
  • 정상 주행 중에 핸들을 급조향하여 요-마크가 생성되면서 일어난 사고들은 핸들 급조향의 원인을 파악해야 대책 수립이 가능하다. 즉 이들 사고의 속도산정과 차량의 운동과정 및 요-마크 생성 이전의 급 조향 당시 위험 요소를 분석해야 대책에 연결될 수 있으나, 아직 정확한 원인규명이 어려운 실정에 있다. 따라서 본 연구에서는 정상 주행중 핸들을 급조향하는 실험을 통하여 요-마크 생성초기 형상의 특성과 선회과정 및 속도 등을 분석하여 교통사고의 원인에 관하여 고찰하였다.

  • PDF

Implementation of Intelligent Electronic Acupuncture Needles Based on Bluetooth

  • Han, Chang Pyoung;Hong, You Sik
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.62-73
    • /
    • 2020
  • In this paper, we present electronic acupuncture needles we have developed using intelligence technology based on Bluetooth in order to allow anyone to simply receive customized remote diagnosis and treatment by clicking on the menu of the smartphone regardless of time and place. In order to determine the health condition and disease of patients, we have developed a software and a hardware of electronic acupuncture needles, operating on Bluetooth which transmits biometric data to oriental medical doctors using the functions of automatically determining pulse diagnosis, tongue diagnosis, and oxygen saturation; the functions are most commonly used in herbal treatment. In addition, using fuzzy logic and reasoning based on smartphones, we present in this paper an algorithm and the results of completion of hardware implementation for electronic acupuncture needles, appropriate for the body conditions of patients; the algorithm and the hardware implementation are for a treatment time duration by electronic acupuncture needles, an automatic determinations of pulse diagnosis, tongue diagnosis, and oxygen saturation, a function implementation for automatic display of acupuncture point, and a strength adjustment of electronic acupuncture needles. As a result of our simulation, we have shown that the treatment of patients, performed using an Electronic Acupuncture Needles based on intelligence, is more efficient compared to the treatment that was performed before.