• Title/Summary/Keyword: Yarn strength

Search Result 108, Processing Time 0.022 seconds

Antimicrobial Properties of Knit made with PET and Ion Exchange Zeolite Nanocomposite Spun Yarn (PET와 이온교환 Zeolite 나노 복합 방적사로 제조한 니트의 항균성)

  • Jeon, Yongwook;Park, Youngmi
    • Textile Coloration and Finishing
    • /
    • v.33 no.1
    • /
    • pp.24-30
    • /
    • 2021
  • In this study, PET containing 3% silver ion-exchange zeolite was mixed with cotton in a ratio of 6:4 to prepare a spun yarn to evaluate the tensile strength, absorption speed, absorption rate, antibacterial property, and the efficiency of deodorization. As a result, the following conclusions were obtained. First, it can be confirmed that silver ion exchange zeolite is evenly distributed inside and on the surface of the antimicrobial PET-SF through SEM. It was found that the tensile strength between the CVC sample mixed with silver ion zeolite PET and cotton and the normal cotton 100% sample was slightly lower in the CVC sample. Although the absorption speed and water absorption rate were measured to find out the moisture characteristics, it was confirmed that there was no significant difference. The contact angle was slightly larger in the antimicrobial CVC sample, but the time it took for the moisture to completely penetrate into the knit fabric was 0.85 seconds. In addition, it was found that out of the total mixing ratio, 40% of antibacterial PET was spun with regular cotton to produce yarn, which had an excellent bacteria reduction rate of 99.9% and a deodorization efficiency of 85%.

Physical Properties of Various Structured Knitted Fabrics (니트의 편성조직에 따른 물성 평가)

  • Yea, Su-Jeong;Song, Wha-Soon
    • Fashion & Textile Research Journal
    • /
    • v.13 no.6
    • /
    • pp.990-995
    • /
    • 2011
  • This study analyzed the effects of the knit stitch type, fiber composition, and yarn thickness on the mechanical properties of knitted fabric. The results were as follows: The course density was the highest in the case of the rib stitch. On the other hand, the wale density was the highest in the case of the float stitch. The thickness was the highest in the case of the rib stitch. The same results were obtained even for different fiber compositions and yarn thicknesses considered in this study. The burst strength of wool knit fabric was higher than that of A/W knit fabric. The stiffness was the lowest in the case of the plain stitch. The same results were obtained even for different fiber compositions and yarn thicknesses. The pilling properties were excellent for all knit stitches, fiber composition, and yarn thicknesses as pilling degree : 5. The air permeability decreased in the following order : rib > plain > float stitch. The same results were obtained even for different fiber compositions and yarn thicknesses. The heat retention rate decreased in the following order : rib > float > plain stitch. The same results were obtained even for different fiber compositions and yarn thicknesses.

Development of Eco-friendly Woven Floor Mat with High Resilience II - Characterization of TPU Coating Yarn and Floor Mat - (고탄성 특성을 보유한 친환경 우븐 바닥재에 관한 연구(II) - TPU 코팅사 및 바닥재의 특성-)

  • Lee, Sun-Hee
    • Fashion & Textile Research Journal
    • /
    • v.14 no.4
    • /
    • pp.635-640
    • /
    • 2012
  • In this study, thermoplastic urethane (TPU) coating yarns were prepared at various extruding temperatures. The fine structure and mechanical properties of resultant TPU coating yarns examined by the wide angle X-ray diffractometer (WAXD), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and tensile test. TPU coating yarns (prepared at extruding temperatures at $175^{\circ}C$) were confirmed as a stable fine structure that obtained excellent tensile strength and flexibility. The C samples prepared by optimized conditions made by TPU woven floor mat. The structure of the woven mat is $4{\times}4$ basket weave and have laminated with the EVA foam to obtained final TPU woven floor mat products. The resultant TPU woven floor mat was obtained to 1.5MN of tensile strength, 22% of the elongation, and 0.2MN of tear strength. The weight loss abrasion and the resilience by the ball rebound of the TPU-woven floor mat was prior to those of the PVC subsequently, we were able to develop a woven floor mat with TPU coating yarn and produce an eco-friendly high valuable woven floor mat using an interior product.

Hydrolysis of Silk Fibroin with Boiling Water, Hydrochloric Acid, and Sodium Hydroxide -On the Quantitative Change in Terminal Amino Group Content- (견피브로인의 비등수 염산 및 수산화나트륨에 의한 가수분해 -말단아미노기의 정양적변화를 중심으로-)

  • Park Chan Hun;Dho Seong Kook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.11 no.1
    • /
    • pp.63-69
    • /
    • 1987
  • Silk fibroin is likely to be hydrolyzed by acids or alkalies at high temperature, and the degree of the hydrolysis has been inferred from the changes in tensile strength and elongation. But, in this experiment, it was intended to infer that from the quantitative changes in terminal aminp group content as well as in tensile strength and elongation. Silk yarn was treated with boiling water, hydrochloric acid, and sodium hydroxide under various conditions. The boiling water somewhat degraded silk fibroin. Silk yarn treated with sodium hydroxide contained more terminal amino group than that treated with hydrochloric acid. This result agreed fairly well with the loss in weight, tensile strength, and elongation: the terminal amino group content increased with the decrease of tensile strength, elongation, and weight. The damage by sodium hydroxide to the silk fibroin was greater than that by hydrochloric acid.

  • PDF

AN OPTIMUM DESIGN STUDY OF INTERLACING NOZZLE BY ANALYZING FLUID FLOW INSIDE INTERLACING NOZZLES

  • Juraeva Makhsuda;Ryu Kyung Jin;Kim Sang Dug;Song Dong Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.93-97
    • /
    • 2005
  • Air interlacing serves to protect the yarn against damage, strengthens inter-filament compactness or cohesion, and ensures fabric consistency. The air interlacing nozzle is used to introduce intermittent nips to a filament yarn so as to improve its performance in textile processing. This study investigates the effect of interlacing nozzle geometry on the interlacing process. The geometries of interlacing nozzles with multiple air inlets located across the width of a yarn channels are investigated. The basic interlacing nozzle is the yarn channel, with a perpendicular single air inlet in the middle. The yarn channel shapes are cross sections with semicircular or rectangular shapes. This paper presents three doubled sub air inlets with main air inlet and one of them is slightly inclined doubled sub air inlets with main air inlet. The compressed air coming out from the inlet hits the opposing wall of the yarn channel, divides into two branches, flows trough the top side of yarn channel, joins with the compressed air coming out from the sub air inlet and then creates two free jets at both ends of the yarn channel. The compressed air moves in the shape of two opposing directional vortices. The CFD-FASTRAN was used to perform steady simulations of impinging jet flow inside of the interlace nozzles. The vortical structure and the flow pattern such as pressure contour, particle traces, velocity vector plots inside of interlace nozzle geometry are discussed in this paper.

  • PDF

Research on the Development of Conductive Composite Yarns for Application to Textile-based Electrodes and Smartwear Circuits (스마트웨어용 텍스타일형 전극 및 배선으로의 적용을 위한 전도성 복합사 개발 연구)

  • Hyelim Kim;Soohyeon Rho;Wonyoung Jeong
    • Fashion & Textile Research Journal
    • /
    • v.25 no.5
    • /
    • pp.651-660
    • /
    • 2023
  • This study aimed to research the local production of conductive composite yarn, a source material used in textile-type electrodes and circuits. The physical properties of an internationally available conductive composite yarn were analyzed. To manufacture the conductive composite yarn, we selected one type of conductive yarn with Ag-coated polyamide of 150d 1 ply, along with two types of polyethylene terephthalate (PET) with circular and triangular cross-sections, both with 150d 1 ply. The conductive composite yarn samples were manufactured at 250, 500, 750, and 1000 turns per meter (TPM). For both conductive composite yarn samples manufactured from two types of PET filaments, the twist contraction rate of the sample with a triangular cross-section was stable. Among the samples, the tensile strength of the sample manufactured at 750 TPM was the highest at approximately 4.1gf/d; the overall linear resistance was approximately 5.0 Ω/cm, which is within the target range. It was confirmed that the triangular cross-section sample manufactured with 750 TPM had a similar linear resistance value to the advanced product despite the increase in the number of twists. In future studies, we plan tomanufacture samples by varying the twist conditions to derive the optimal conductive yarn suitable for smartwear and smart textile manufacturing conditions.

A Study on the Physical Properties of Heat resistance and Cut resistance of Coating Gloves for Work

  • Pyo, Kyeong-Deok;Jung, Eugene;Park, Cha-Cheol
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.91-96
    • /
    • 2019
  • The purpose of this study was to examine the effect of different yarn twisting methods on physical properties. Plain single jersey structured fabrics were knitted from Kevlar yarn, and from Kevlar/HPPE, and from Kevlar/Basalt fiber, and from Kevlar/Glass fiber and Kevlar/Stainless steel fiber blended and core-spun yarns. and then, The fabrics were coated NBR Latex. The physical properties, including tear strength, modulus, degree of penetration, heat resistance, and cut resistance of the knitted fabrics were investigated and compared. Kevlar/HPPE blended yarn fabrics recorded the highest heat resistance (13 Sec.). and Kevlar/HPPE blended yarn fabrics had good cut resistance (Cut Level 4).

Fabrication of unidirectional commingled-yarn-based carbon fiber/polyamide 6 composite plates and their bend fracture performances (일방향 혼합방사형 탄소섬유/폴리아미드 6 복합재료판의 제작조건과 굽힘파괴거동)

  • Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.416-427
    • /
    • 1998
  • Unidirectional commingled-yarn-based carbon fiber(CF)/polyamide(PA) 6 composite was fabricated under molding pressures of 0.4, 0.6 and 1.0 MPa to study its flexural deformation and fracture behavior. Fiber/matrix interfacial bonding area became larger with an increase of molding pressure from 0.4 to 0.6 MPa. For molding pressures .geq. 0.6 MPa, good flexural performance of similar magnitudes was attained. For the fracture test, four kinds of notch direction were adopted : edgewise notches parallel (L) and transverse (T) to the major direction of fiber bundles, and flatwise notches parallel(ZL) and perpendicular(ZT) to this direction. Nominal bend strength for L and ZL specimens exhibited high sensitivity to notching. ZL specimens revealed the lowest values of the critical stress intensity factor $K_c$ which was slightly superior to those of unfilled PA6 matrix. Enlargement of the compression area for T specimens was analyzed by means of the rigidity reduction resulting from the fracture occurrence.

The Evaluation of Physical Properties and Hand of Bast/Man-Made Fiber Mixed Fabrics (마와 인조섬유 교직물의 물성 및 평가)

  • 김순심;양진숙;최종명
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.6
    • /
    • pp.828-837
    • /
    • 2000
  • The purpose of this study was to evaluate the physical properties and the hand of bast/man made fiber mixed fabrics compared to linen. The mixed fabrics were made by rayon, polyester and modal fiber as warp yarn, and ramie, flax, rayon/flax and cotton/flax as weft yarn. The crease resistance, drape, tensile strength/extension, water absorbancy and warmth retention were measured for test fabrics. The mechanical properties were measured by Kawabata system, and the hand value was calculated by previously developed equation. The results obtained from this study were as follows: The crease resistance and drape properties of bast/man made fiber mixed fabrics were improved compared to those of linen. The tensile strength of polyester/bast fiber mixed fabrics increased compared to those of linen, but rayon/bast and modal/bast fiber mired fabrics decreased. The extension of all mixed fabrics was increased compared to that of linen. The rayon/ramie and modal/ramie mixed fabrics showed lower warmth retention than linen. The mixed fabrics used rayon and modal as warp yarn showed higher water absorbancy than linen. The Koshi and Hari hand value of all mixed fabrics showed lower than those of linen. Fukurami hand value showed little difference between mixed fabrics and linen. Shari, Kishimi, and Shinayakasa hand value of rayon/bast and modal/bast fiber mixed fabrics showed higher than those of linen.

  • PDF

The Physical Properties of Knitted Fabric with Hanji/Rayon (한지와 레이온 복합사 편성물의 물성)

  • Kim, Su Mi;Song, Wha Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.2
    • /
    • pp.151-158
    • /
    • 2013
  • This study presents basic knitted fabric data on the use of ply yarn with rayon yarn and eco-friendly/high-valued Hanji yarn. Physical properties (gauge, thickness, burst strength, air permeability, stiffness, Qmax, dimensional stability and surface image) of Hanji 100%, rayon 100% and Hanji/rayon 50:50 knitted fabrics are investigated. The results are as follows. Course direction of gauge decrease in the following order: rayon 100% > Hanji/rayon 50/50 > Hanji 100%. In addition wale direction of gauge decrease in the following order: Hanji 100% > Hanji/rayon 50/50 > rayon 50/50. Thickness and air permeability decrease in the following order: Hanji 100% > Hanji/rayon 50/50 > rayon 100%. Burst strength decrease in the following order: rayon 100% > Hanji 100% > Hanji/rayon 50/50. Stiffness and Qmax decrease in the following order: rayon 100% > Hanji/rayon 50/50 > Hanji 100%. Laundry for dimensional stability is knitted fabric with Hanji/rayon 50/50 than rayon 100% and Hanji 100% improved using neutral detergent and stable at $20^{\circ}C$. From surface image observation, the cracks of Hanji 100% and fibrils of rayon 100% decrease when using knitted fabric with Hanji/rayon 50/50.