• Title/Summary/Keyword: Yarn characteristics

Search Result 132, Processing Time 0.027 seconds

A Study on Dynamic Characteristics Analysis of Spindle Unit for Two-for-One Twister (투포원 연사기용 스핀들 유니트의 동특성 해석에 관한 연구)

  • Kim, Gwang-Yeong;Kim, Jong-Su
    • 연구논문집
    • /
    • s.27
    • /
    • pp.127-139
    • /
    • 1997
  • Two-for-one twister is a kind of textile machine and makes special fancy yarn which is twisted two times per one revolution in order to increase tensile strength and wear resis-tance of yarn. Spindle mechanism has to be stable and continuous motion in high speed revolution, and then optimal design is necessary to analyze dynamic characteristics of spindle unit. Spindle unit is consist of blade and rotary disc that are cylindrical body of revolution. For analysis of the dynamic characteristics of spindle unit, transfer matrix method is used and a numerical code SPINDLE also. Torsion and natural bending frequency of the spindle unit are examined. Its displacement mode is studied in function of variable revolutions.

  • PDF

A Computational Study for an Optimum Spindle Shape with Uniform Yarn Dyeing (균염을 가지는 최적스핀들 형상에 관한 수치해석적 연구)

  • Kang, M.S.;Choi, J.Y.;Kim, H.D.;Kim, Y.D.;Jeon, D.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.456-459
    • /
    • 2008
  • In the field of yarn dyeing, the most generally employed method is a type of package dyeing which uses a package cheesesstacked on a spindle made of a perforated tube. Spindles up to now, have been designed without considering the characteristics of dyeing liquid, focusing only on the geometric configuration which cause many problems such as lack of level dyeing. To improve the level dyeing and find the appropriate spindle configuration for the most effective dyeing process, this study examines the spindle flow-field in detail, using a computational method. Flow characteristics inside the spindle have been investigated with varying in porosity, porous diameter and the velocity of the flow. The results show that the total pressure of the flow through the spindle is used to overcome body force. The characteristics of the flow from the porous spindle could also be observed. Based on the results from this study, an effective spindle configuration for level-dyeing has been proposed.

  • PDF

고감성 의류용 수분감응형 인텔리전트 소재의 물성

  • Kim, Hyun-Ah;Woo, Ji-Woon
    • Science of Emotion and Sensibility
    • /
    • v.17 no.1
    • /
    • pp.93-104
    • /
    • 2014
  • This paper investigates the physical properties such as water absorption, drying and hygral expansion of moisture responded transformable fibers and their knitted fabrics including dyeing characteristics according to the different dyeing time and temperature. For this purpose, three kinds of covered filament yarn specimens using HEF and spandex as core and PET, aerocool as a covering filament were prepared. The knitted fabric specimens were made using three kinds yarn specimens and dyed with different dyeing temperature and time. The moisture absorption, drying and hygral expansion of three kinds of knitted fabric specimens were measured and discussed with yarn structure. The wearing performance of these knitted fabric specimens were also measured and discussed with yarn characteristics using FAST system. Finally, the dyeing characteristics such as dye affinity, color difference and color fastness to washing of these knitted fabric specimens were measured and discussed with different dyeing temperature and time for examining dyeing process performance of these moisture responded transformable knitted fabrics.

Virtual Experimental Characterization of 3D Orthogonal Woven Composite Materials (직교 직물 복합재료 물성치 예측을 위한 가상 수치 실험)

  • Lee, Chang-Sung;Shin, Hun;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.205-210
    • /
    • 2001
  • In this work, virtual material characterization of 3D orthogonal woven composites is performed to predict the elastic properties by a full scale FEA. To model the complex geometry of 3D orthogonal woven composites, an accurate unit structure is first prepared. The unit structure includes warp yarns, filler yarns, stuffer yams and resin regions and reveals the geometrical characteristics. For this virtual experiments by using finite element analysis, parallel multifrontal solver is utilized and the computed elastic properties are compared to available experimental results and the other analytical results. It is founded that a good agreement between material properties obtained from virtual characterization and experimental results. Using the method of this virtual material characterization, the effects of inconsistent filler yarn distribution on the in-plane shear modulus and filler yarn waviness on the transverse Young's modulus are investigated. Especially, the stiffness knockdown of 3D woven composite structures is simulated by virtual characterization. Considering these results, the virtual material characterization of composite materials can be used for designing the 3D complex composite structures and may supplement the actual experiments.

  • PDF

Antimicrobial Properties of Knit made with PET and Ion Exchange Zeolite Nanocomposite Spun Yarn (PET와 이온교환 Zeolite 나노 복합 방적사로 제조한 니트의 항균성)

  • Jeon, Yongwook;Park, Youngmi
    • Textile Coloration and Finishing
    • /
    • v.33 no.1
    • /
    • pp.24-30
    • /
    • 2021
  • In this study, PET containing 3% silver ion-exchange zeolite was mixed with cotton in a ratio of 6:4 to prepare a spun yarn to evaluate the tensile strength, absorption speed, absorption rate, antibacterial property, and the efficiency of deodorization. As a result, the following conclusions were obtained. First, it can be confirmed that silver ion exchange zeolite is evenly distributed inside and on the surface of the antimicrobial PET-SF through SEM. It was found that the tensile strength between the CVC sample mixed with silver ion zeolite PET and cotton and the normal cotton 100% sample was slightly lower in the CVC sample. Although the absorption speed and water absorption rate were measured to find out the moisture characteristics, it was confirmed that there was no significant difference. The contact angle was slightly larger in the antimicrobial CVC sample, but the time it took for the moisture to completely penetrate into the knit fabric was 0.85 seconds. In addition, it was found that out of the total mixing ratio, 40% of antibacterial PET was spun with regular cotton to produce yarn, which had an excellent bacteria reduction rate of 99.9% and a deodorization efficiency of 85%.

Weavability Limit of Yarns with Thickness Variation in Shuttleless Weaving

  • Seyam, Abdelfattah M.
    • Fibers and Polymers
    • /
    • v.4 no.4
    • /
    • pp.176-181
    • /
    • 2003
  • Theoretical weavability limit relationships of fabrics from regular warp yarns and fancy filling yams with thickness variation in shuttleless weaving are reviewed. The relationships correlate maximum warp and filling cover factors, warp and filling yarn characteristics, the distribution of thick and thin places of filling yarn over the fabric surface, and the warp and filling weave factor. The research considers single filling feeder and multiple feeders cases. Additionally, comparisons between the weavability limit of regular yarns and fancy yams in shuttle and shuttleless weaving are given.

Effects of Twisting Parameters on Characteristics of Rotor-Spun Composite Yarns with Spandex

  • Zhang H.X.;Xue Y.;Wang S.Y.
    • Fibers and Polymers
    • /
    • v.7 no.1
    • /
    • pp.66-69
    • /
    • 2006
  • Spandex fibers have superior stretch and elastic recovery ability. Composite yarns containing spandex are frequently used to manufacture elastic textile products and accessories. We have developed a composite yarn spinning system that produces different kinds of composite yarns containing spandex on a modified open-end rotor spinning frame. By changing the twisting parameter of composite yarns, we studied the structure and properties of rotor-spun composite yarns with spandex. The results indicate that the twisting parameter has great influence on the structure and properties of rotor-spun composite yarns with spandex. The linear density of spandex filament has influence on the properties of composite yarns too. In comparison with normal rotor-spun yarn, the appearance of composite yarns is clearer, the structure is much tighter, and the properties are improved.

A Study on Shrinkage Properties of Polytrimethylene Terephthalate (PTT) Drawn Textured Yarn (Polytrimethylene terephthalate(PTT) 가연사의 수축거동에 관한 연구)

  • Choi, Jae-Woo;Jang, Bong-Sik
    • Fashion & Textile Research Journal
    • /
    • v.6 no.4
    • /
    • pp.492-496
    • /
    • 2004
  • Shrinkage properties of drawn textured Poly(trimethylene terephthalate, PTT) yarn, which has been developed recently, were investigated to provide fundamental information for the textile industry. Shrinkage ratio characteristics on PTT yarn with six different count were investigated with tension, dry and wet thermal temperature. In non-tension, the shrinkage ratio were increased to increasing temperature at dry and wet thermal treatment, and in tension, the shrinkage ratio were increased to increasing tension at dry and wet thermal treatment.

Physical Properties of Ultra-fine Denier Filament Yarn Fabric

  • Kim, Jong-Jun;Son, Yang-Kug
    • Journal of Fashion Business
    • /
    • v.10 no.3
    • /
    • pp.23-30
    • /
    • 2006
  • Various high-touch textile products have been developed recently including ultra-fine denier filament yarn fabrics. The touch or hand of high value-added products is of prime importance. Physical and mechanical properties of fabric specimens, ultra-fine denier filament yarn fabric specimen, 100% wool fabric and wool/polyester 50:50 fabric,were measured using the KES. Compressibility of the ultra-fine denier fabric is recommendable, possibly due to the good bulk property of the specimen. Overall, the THV of the ultra-fine denier fabric is positioned between those of the 100% wool fabric and wool/polyester 50:50 fabric. Observed differences in the physical and mechanical properties explain the fabric specimen characteristics reasonably.

A Study on the Dimensional Characteristics of the Weft Knitted Fabrics with Bamboo Knitted Yarn (Bamboo사 평 편조직 위편성물의 형태안정성에 관한 연구)

  • Choi, Jae-Woo;Jang, Bong-Sik;Lee, Eun-Woo;Kim, Dong-Yeub
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.3
    • /
    • pp.79-82
    • /
    • 2012
  • Aim of this study is to investigate the dimensional characteristics of the weft knitted fabrics with Bamboo knitted yarn. This Bamboo knitted yarn was made of the biodegradability fiber. The structure of weft knitted fabrics that was utilized for this study is the plain stitch, which is the most basic structure among all weft knitted fabrics. The loop density, courses density, and wales density are more increased as the loop length is shorter. The loop density increased as pre-treatment process and dyeing process progressed after dry treatment process, and on the contrary, the heat setting process made it decreasing. After the dyeing process proceed, the loop density and the course density were displayed the highest values. When the knitted fabrics were fully relaxed, the loop density was $2000/in^2$, the courses density was 52/in, the wales density was 39/in.