• Title/Summary/Keyword: Yard

Search Result 738, Processing Time 0.022 seconds

Design for Container Terminal Simulator Using an Object-oriented Approach (객체지향접근법을 사용한 컨테이너 터미널 시뮬레이터의 설계)

  • Yun, Won-Young;Choi, Yong-Suk;Lee, Myung-Gil;Song, Jin-young
    • IE interfaces
    • /
    • v.13 no.4
    • /
    • pp.608-618
    • /
    • 2000
  • This paper proposes a design procedure to develop the object-oriented simulator of port container terminal. The design methodology uses an object-oriented approach to support an object-oriented simulation and the design procedure consists of object scheme and event scheme. The object-scheme is a procedure to determine the structure of material flow objects and information flow objects and a relation diagram between objects that have attributes and methods. The event scheme is a procedure to define methods and to connect messages of objects. We assume that the container terminal system consists of gate, container yard, and berth and the equipment used in the container terminal are container cranes, transfer cranes, yard tractors, and trailers.

  • PDF

Development of Integrated Planning System for Efficient Container Terminal Operation (효율적인 컨테이너 터미널 운영 계획 작성을 위한 통합 시스템 개발)

  • 신재영;이채민
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.2
    • /
    • pp.71-89
    • /
    • 2002
  • In this paper, an integrated planning system is introduced for the efficient operation of container terminal. It consists of discharging and loading planning, yard planning, and berth scheduling subsystem. This interface of this system is considered for user's convenience, and the rule-based system is suggested and developed in order to make planning with automatic procedures, warning functions for errors.

  • PDF

Operation Strategy of Container Terminal in the Era of Unlimited Competition (무한경쟁시대의 컨테이너부두 운영전략)

    • Journal of Korean Port Research
    • /
    • v.12 no.2
    • /
    • pp.195-206
    • /
    • 1998
  • By the rapid expansion of containerization and intermodal transportation in international shipping since the 1970's, the larger containerships have emerged and concentrated their calls at a limited number of ports. Moreover, large-scale container terminals have been built to accommodate the ever-larger containerships, and the mordernization of terminal facilities and many developments in information technology etc. have been brought out. Thus, unlimited competition has been imposed on every terminal with neighbouring ports in Japan, Singapore, Hongkong and Taiwan etc. The purpose of this study is to suggest how the container terminal operators cope with unlimited competition between local or foreign terminals. The results are suggested as follows: First, transshipment cargoes, which the added value is high, is to be induced. Second, the function of storage is given on On-Dock Yard. Third, Berth Pool Operation System is to be introduced, especially in Gamman Container Terminal and Kwangyang Container Terminal. Fourth, the cargo handling charges is to be decided by terminal operator.

  • PDF

Development of RF system for Automatic Container Terminal (한국형 컨테이너 터미널 자동화를 위한 RF 시스템 개발)

  • 윤현성;이창호;변건식
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.41-44
    • /
    • 2000
  • In this paper, the dedicated short range communication(DSRC) system which used as the automatic gate system(AGS) Donga Univ. RRC developed is applied to yard automation. We proposed the communication algorithm of between roadside equipment(RSE) and on-board equipment(OBE). We analyzed transmitted and received information, classification and feature of between OBE and RSE for automation of the container yard and unloading system.

  • PDF

컨테이너 터미널에서의 장치장 운용 계획에 관한 연구

  • Jeon, Su-Min;Kim, Gap-Hwan;Kim, Jae-Jung;Ryu, Gwang-Ryeol;Park, Nam-Gyu;Choe, Hyeong-Rim
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.442-450
    • /
    • 2005
  • One of the important tactical problems for the efficient operation of container terminals is to determine the usage of storage space There are two different strategies for stacking containers; mixing strategy. in which outbound containers and inbound containers are mixed in the same block. and segregating strategy, in which outbound containers and inbound containers are stacked in blocks different from each other. The performance of space allocation strategies also depends on the types of handling equipment in the yard and the number of handling equipment allocated to each block. A simulation model is developed considering various handling characteristics of yard cranes. Performances of various space and equipment allocation strategies are evaluated by using the simulation model.

  • PDF

A Simulation Study for Equipment Scale and Hanoling Capacity of Container Terminal (컨테이너 터미널의 장비규모 및 처리능력에 대한 시뮬레이션 연구)

  • 윤원영;최용석
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.177-185
    • /
    • 1999
  • This paper deals with the case study that determine the best equipment scale to be satisfied a handing capacity of the container terminal using computer simulation techniques. The objective of this study is to suggest an operation alternative of equipment scale including container canes, transfer cranes, and yard tractors which reflects a container throughput. For the simulation, the object-oriented simulator with the special purpose of container terminal analysis is used. And the used simulator was developed to simulate the transfer crane based container terminal for yard equipment. Using the simulator, we test an existing port container terminal, PECT(Pusan East Container Terminal).

여과집진막 채용에 의한 소각플랜트의 유해물질 제거 사례

  • 조재수
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.03a
    • /
    • pp.135-159
    • /
    • 1995
  • Typical Solid Waste Stream Composition : Paper and paperboard (41%), Glass (8.2%), Metals (8.7%), Plastics (6.5%), Rubers, Leather, Textiles and Wood (8.1%), Food Wastes (7.9%), Yard Wastes (17.9%), Miscellaneous Inorganic Wastes (1.6%).

  • PDF