• Title/Summary/Keyword: YSZ film

Search Result 95, Processing Time 0.034 seconds

Performance of Air Electrodes with a Surface-Polished Yttria-Stabilized Zircona Electrolyte for Thin-Film Solid Oxide Fuel Cells (박막 고체산화물 연료전지용 이트리아 안정화 지르코니아 전해질 연마표면상의 공기극 성능)

  • Lee, Yu-Gi
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.283-289
    • /
    • 2001
  • Composite cathodes of 50/50 vol% LSM- YSZ (La$_{1-x}$Sr$_{x}$MnO$_3$-yttria stabilized zirconia) were deposited onto surface- Polished YSZ electrolytes by colloidal deposition technique. The cathode characteristics were then examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD) and studied by ac impedance spectroscopy (IS). The typical impedance spectra measured for an air/LSM- YSZ/YSZ/Pt/air cell at $700^{\circ}C$ were composed of two depressed arcs. Addition of YSZ to the LSM electrode significantly enlarged the triple-phase boundaries (TPB) length inside the electrode, which led to a pronounced decrease in cathodic resistivity of LSM-YSZ composite electrodes. Polishing the electrolyte surface to eliminate the influences of surface impurities and to enlarge the TPB length can further reduce cathode resistivity. The cathodic resistivity of the LSM- YSZ electrodes was a strong function of operation temperature, composition and particle size of cathode materials, applied current, and electrolyte surface roughness.

  • PDF

Effect of the Buffered-template on the Property of YBCO Superconducting Film Deposited by MOCVD Method (MOCVD 법에 의해 제조된 YBCO 초전도 박막의 물성에 대한 완충층 템플릿의 영향)

  • Jun, Byung-Hyuk;Choi, Jun-Kyu;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 2006
  • [$YBa_2Cu_3O_{7-x}$] thin films were deposited on various buffered-templates by a metal organic chemical vapor deposition(MOCVD). Three different templates of $CeO_2/YSZ/CeO_2/pure-Ni(CYC),\;CeO_2/YSZ/Y_2O_3/Ni-3at.%W(YYC)$ and $CeO_2/IBAD-YSZ$/stainless steel were used. The Ni and Ni-W alloy tapes were biaxially textured by cold rolling and annealing heat treatment. The dense YBCO films were grown on both the IBAD and YYC templates with no microcrack, while the YBCO films on the CYC templates were grown with the formation of microcracks and NiO. The YBCO film on the YYC template showed the higher $I_c$ than that on CYC template. Especially, the IBAD templates with a thin $CeO_2$(type I) and thick $CeO_2$(type II) top layer were used to compare the deposition nature of the YBCO on them. Comparing the current property of the YBCO films on IBAD templates, the YBCO film deposited on thick $CeO_2$ layer was better than the film on thin $CeO_2$ layer.

  • PDF

Preparation of Thin Film Electrolyte for Solid Oxide Fuel Cell by Sol-Gel Method and Its Gas Permeability (졸-겔법을 이용한 고체산화물연료전지의 전해질 박막 제조 및 가스 투과도)

  • Son, Hui-Jeong;Lee, Hye-Jong;Lim, Tak-Hyoung;Song, Rak-Hyun;Peck, Dong-Hyun;Shin, Dong-Ryul;Hyun, Sang-Hoon;Kilner, John
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.827-832
    • /
    • 2005
  • In this study, thin electrolyte layer was prepared by 8YSZ ($8mol\%$ Yttria-Stabilized Zirconia) slurry dip and sol coating onto the porous anode support in order to reduce ohmic resistance. 8YSZ polymeric sol was prepared from inorganic salt of nitrate and XRF results of xerogel powder exhibited similar results $(99.2\pm1wt\%)$ compared with standard sample (TZ-8YS, Tosoh Co.). The dense and thin YSZ film with $1{\mu}m$ thickness was synthesized by coating of 0.7M YSZ sol followed by heat-treatment at $600^{\circ}C$ for 1 h. Thin film electrolyte sintered at $1400^{\circ}C$ showed no gas leakage at the differential pressure condition of 3 atm.

Study on Depositing Oxide Films on Ni Substrate for Superconducting Tape (초전도 테이프 제작을 위한 니켈기판 상의 산화물 박막 증찰)

  • Kim, Ho-Sup;Shi, Dongqui;Ko, Rock-Kil;Chung, Jun-Ki;Ha, Hong-Soo;Song, Kyu-Jeong;Park, Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1356-1361
    • /
    • 2004
  • High temperature superconducting coated conductor has a structure of ///. The buffer layer consists of multi-layer, this study reports the deposition method and optimal deposition conditions of YSZ(Yttria-stabilized zirconia) layer which plays a important part in preventing the elements of substrate from diffusing into the superconducting layer. YSZ layer was deposited by DC reactive sputtering technique using water vapor for oxidizing deposited elements on substrate. To investigate optimal thickness of YSZ film, four YSZ/CeO$_2$/Ni samples with different YSZ thickness(130 nm, 260 nm, 390 nm, and 650 nm) were prepared. The SEM image showed that the surface of YSZ layer was getting to be rougher as YSZ layer was getting thicker and the growth mode of YSZ layer was columnar grain growth. After CeO$_2$ layer was deposited with the same thickness of 18.3 nm on each four samples, YBCO layer was deposited by PLD method with the thickness of 300 nm. The critical currents of four samples were 0, 6 A, 7.5 A, and 5 A respectively. This shows that as YSZ layer is getting thicker, YSZ layer plays a good role as a diffusion barrier but the surface of YSZ layer is getting rougher.

Synthesis of YSZ Thin Films by PECVD (PECVD에 의한 YSZ(Yttria Stabilized Zirconia)박막 제조)

  • Kim, Gi-Dong;Sin, Dong-Geun;Jo, Yeong-A;Jeon, Jin-Seok;Choe, Dong-Su;Park, Jong-Jin
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.234-239
    • /
    • 1999
  • A Abstract Yttria-stabilized zirconia(YSZ) thin films were synthesized by plasma enhanced chemical vapor deposition process. $Zr[TMHD]_4$ $Y[TMHD]_3$ precursors and oxygen were used with the deposition temperature of $425^{\circ}C$ and rf power ranging 0-100 watt. Effects of the deposition parameters were studied by X-ray diffraction and thickness anal­ysis. YSZ thin films have cubic crystal structure with (200) orientation. From the results of EDX analysis, the converte ed content of TEX>$Y_2O_3$ was determined to be 0-36%, and the film thickness was increased with bubbling temperature which is considered to be due to increasing TEX>$Y_2O_3$ flux. The depth profiles of Zr, Y and 0 appeared relatively $\infty$nstant through film thickness. Columnar grains of $1000~2000\AA$ grew vertical to the substrate surface for the case of Ar carri­er gas. In case of He carrier gas, the grain size was observed to be about $1000~2000\AA$. X-ray diffraction data showed the increase of lattice constant with TEX>$Y_2O_3$ content. It was that the presence of the cracks formed during film deposition, partially released the stress generated by the increase of lattice constant.

  • PDF

Fabrication of Thin Solid Oxide Film Fuel Cells

  • Jee, Young-Seok;Chang, Ik-Whang;Son, Ji-Won;Lee, Jong-Ho;Kang, Sang-Kyun;Cha, Suk-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.82-85
    • /
    • 2010
  • Recently, thin film processes for oxides and metal deposition, such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), have been widely adapted to fabricate solid oxide fuel cells (SOFCs). In this paper, we presented two research area of the use of such techniques. Gadolinium doped ceria (GDC) showed high ionic conductivity and could guarantee operation at low temperature. But the electron conductivity at low oxygen partial pressure and the weak mechanical property have been significant problems. To solve these issues, we coated GDC electrolyte with a nano scale yittria-doped stabilized zirconium (YSZ) layer via atomic layer deposition (ALD). We expected that the thin YSZ layer could have functions of electron blocking and preventing ceria from the reduction atmosphere. Yittria-doped barium zirconium (BYZ) has several orders higher proton conductivity than oxide ion conductor as YSZ and also has relatively high chemical stability. The fabrication processes of BYZ is very sophisticated, especially the synthesis of thin-film BYZ. We discussed the detailed fabrication processes of BYZ as well as the deposition of electrode. This paper discusses possible cell structure and process flow to accommodate such films.

Performance Enhancement of SOFC by ALD YSZ Thin Film Anode Interlayer (ALD YSZ 연료극 중간층 박막 적용을 통한 고체 산화물 연료전지의 성능 향상)

  • An, Jihwan;Kim, Hyong June;Yu, Jin Geun;Oh, Seongkook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.31-35
    • /
    • 2016
  • This paper demonstrates the successful application of yttria-stabilized zirconia thin films deposited by atomic layer deposition to the anode-side interlayer for cerium oxide electrolyte based solid oxide fuel cell. At the operating temperature over $500^{\circ}C$, the electrical conductivity of cerium oxide electrolyte is known to dramatically increase and, therefore, the open circuit voltage of the cell decreases leading to the decrease of the performance. Ultra-thin (60 nm) atomic layer deposited yttria-stabilized zirconia thin film in this study conformally coated the anode-side surface of the cerium oxide electrolyte and efficiently blocked the electrical conduction through the electrolyte. Accordingly, the open circuit voltage increased by up to 20%, and the maximum power density increased by 52% at $500^{\circ}C$

Limit-current type zirconia oxygen sensor with porous diffusion layer (다공성 확산층을 이용한 한계전류형 지르코니아 산소센서)

  • Oh, Young-Jei;Lee, Chil-Hyoung
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.329-337
    • /
    • 2008
  • Simple, small and portable oxygen sensors were fabricated by tape casting technique. Yttria stabilized zirconia containing cordierite ceramics (YSZC) were used as a porous diffused layer of oxygen in pumping cell. Yttria stabilized zirconia (YSZ) solid electrolyte, YSZC porous diffusion layer and heater-patterned ceramic sheets were prepared by co- firing method. Limit current characteristics and the linear relationship of current to oxygen concentration were observed. Viscosity variation of the slurries both YSZ and YSZC showed a similar behavior, but micro pores in the fired sheet were increased with increasing of the cordierite amount. Molecular diffusion was dominated due to the formation of large pores in porous diffusion layer. The plateau range of limit current in porous-type oxygen sensor was narrow than the one of aperture-type oxygen sensor. However limit current curve was appeared in porous-type oxygen sensor even at the lower applied voltage. The plateau range of limit-current was widen as increasing the thickness of porous diffusion layer of the YSZ containing cordierite. Measuring temperature of $600{\sim}650^{\circ}C$ was recommended for limit-current oxygen sensor. Porous diffusion layer-type oxygen sensor showed faster response than the aperture-type one and was stable up to 30 days running without any crack at interface between the layers.

Fabrication and characteristics of limit-current type oxygen sensor with monolith aperture structure (일체화된 Aperture 구조의 한계전류형 산소센서의 제작 및 특성)

  • Oh, Young-Jei;Lee, Deuk Yong
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.273-280
    • /
    • 2008
  • Monolith aperture-type oxygen sensors with simple structure of YSZ(pin-hole)/Pt/ YSZ(solid electrolyte)/Pt were fabricated by co-firing technique. To enhance the yield of productivity, a couple of YSZ green sheets for diffused barrier and solid electrolyte were prepared by tape-casting and co-firing method. The limit current characteristics of the oxygen sensors were measured between 500 and $650^{\circ}C$ The heating temperature of $600^{\circ}C$ was optimum as a portable oxygen sensor in the range of oxygen concentration from 0 to 75 vol%. Linear proficiency of limit current behavior as a function of oxygen concentration was controlled by the variation of aperture dimension. The fabricated oxygen sensors showed the stable sensing output for 30 days. Gas leakage in bonding area due to warping, cracking and thermal cycling was not found in the period.

Influences of Electrochemical Vapor Deposition Conditions on Growth Rate ad Characteristics of YSZ Thin films(II) (YSZ 박막의 성장속도와 특성에 미치는 전기화학증착의 조건의 영향(II))

  • 박동원;전치훈;김대룡
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.3
    • /
    • pp.355-361
    • /
    • 1996
  • Yttria stabilized zirconia (YSZ) thin films were prepared by the electrochemical vapor deposition (EVD) method on the porous Al2O3 substrates. Y2O3 mol% of thin film was linearly increased with yttrium mole fraction of vapor phase. As yttrium mole fraction(Zyc13=0.18) increased dense and faceted thin films were enhanced. However as the yttrium mole fraction (Zyc13=0.04) decreased porous thin films with monoclinnic phase prevailed. With increasing pressure difference of substrate sides penetration depth decreased porosity and amount of monoclinic phase in the films increased.

  • PDF