• Title/Summary/Keyword: YSO

Search Result 28, Processing Time 0.025 seconds

Genetic Diversity and Relationship of Ogye Population in Korea Using 25 Microsatellite Markers (MS 마커를 활용한 지역별 오계 유전자원의 다양성 및 유연관계 분석)

  • Roh, Hee-Jong;Kim, Kwan-Woo;Lee, Jin-Wook;Jeon, Da-Yeon;Kim, Seung-Chang;Jeon, Ik-Soo;Ko, Yeoung-Gyu;Lee, Jun-Heon;Kim, Sung-Hee;Baek, Jun-Jong;Oh, Dong-Yep;Han, Jae-Yong;Lee, Seung-Sook;Cho, Chang-Yeon
    • Korean Journal of Poultry Science
    • /
    • v.45 no.3
    • /
    • pp.229-236
    • /
    • 2018
  • The aim of this study was to evaluate the genetic diversity and relationships of Ogye populations in Korea. A total of 243 genomic DNA samples from 6 Ogye population (Yeonsan Ogye; YSO, Animal Genetic Resources Research Center Ogye; ARO, Chungbuk Ogye; CBO, Chungnam Ogye; CNO, Gyeongbuk Ogye; GBO, Seoul National University Ogye; SUO) and 3 introduced chicken breeds (Rhode Island Red; RIR, White Leghorn; LG, Cornish; CN) were used. Sizes of 25 microsatellite markers were decided using GeneMapper Software(v 5.0) after analyzing ABI 3130XL. A total of 153 alleles were observed and the range was 2 to 10 per each locus. The mean of expected and observed heterozygosity and PIC (Polymorphism Information Content) value was 0.53, 0.50, 0.46 respectively. The lowest genetic distance (0.073) was observed between YSO and SUO, and the highest distance (0.937) between the RIR and CBO. The results of clustering analysis suggested 3 clusters (${\Delta}K=7.96$). Excluding GBO population, 5 Ogye populations (YSO, ARO, CBO, CNO, SUO) were grouped in same cluster with high genetic uniformity (0.990, 0.979, 0.989, 0.994, 0.985 respectively). But GBO population was grouped in cluster 1 with low genetic uniformity (0.340). The results of this study can be use to basic data for the genetic evaluation and management of Ogye populations in Korea.

Two New SiO Maser Sources in High-Mass Star-Forming Regions

  • Cho, Se-Hyung;Yun, Youngjoo;Kim, Jaeheon;Liu, Tie;Kim, Kee-Tae;Choi, Minho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.46.3-46.3
    • /
    • 2016
  • We present the ALMA Cycle 2 results "Two New SiO Maser Sources in High-Mass Star-Forming Regions" which was published in the Astrophysical Journal (Vol. 826, P157, 2016). Silicon monoxide (SiO) masers are rare in star forming regions, with the exception of five known SiO maser sources. However, we detected two new SiO maser sources from infrared loud clumps of the high-mass star forming regions G19.61-0.23 and G75.78+0.34 using the KVN single dish. High angular resolution observations with ALMA and JVLA toward G19.61-0.23 suggest that the deeply embedded young stellar object (YSO) of SMA 1 is powering the SiO masers. In addition, the SiO v=1, J=1-0 line shows four spike features while the v=2 maser shows combined features of one spike and broad wing components, implying energetic activities of the YSO of SMA 1 in the G19.61-0.23 hot molecular core. The SiO v=0, J=2-1 emission shows bipolar outflows in NE-SW direction with respect to the center of the SiO maser source. A high angular resolution map of the SiO v=1, J=2-1 maser in G75.78+0.34 shows that the SiO maser is associated with the CORE source at the earliest stage of high-mass star formation. Therefore, the newly detected SiO masers and their associated outflows will provide good probes for investigating this early high-mass star formation.

  • PDF

Quantifying Variability of YSOs in the Mid-IR Over Six Years with NEOWISE

  • Park, Wooseok;Lee, Jeong-Eun;Contreras Pena, Carlos;Johnstone, Doug;Herczeg, Gregory;Lee, Sieun;Lee, Seonjae;Bhardwaj, Anupam;Schieven, Gerald
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.57.2-57.2
    • /
    • 2021
  • Variability in Young Stellar Objects (YSOs) can be caused by time-dependent accretion rates, geometric changes in the circumstellar disks, the stochastic hydromagnetic interactions between stellar surfaces and inner disk edges, reconnections within the stellar magnetosphere, and hot/cold spots on stellar surfaces. We uncover ~1400 variables from a sample of ~5300 YSOs in nearby low-mass star-forming regions using mid-IR light curves obtained from the 5.5-years NEOWISE All Sky Survey. The mid-IR variability traces a wide range of dynamical, physical, and geometrical phenomenon. We classify six types of YSO variability based on their light curves: secular variability (Linear, Curved, Periodic) and stochastic variability (Burst, Drop, Irregular). YSOs in earlier evolutionary stages have higher fractions of variables at all types and higher amplitudes for the variability. Along with brightness variability, we also find a diverse range of secular color variations, which can be attributed to a competitive interplay between the variable accretion luminosity of the central source and the variable extinction by material associated with the accretion process. We compare the variability of known FUors/EXors and VeLLOs/LLSs, which represent two extreme ends (burst versus quiescent) of the episodic accretion process; FUors/EXors have a higher fraction of variables (65%) than VeLLOs/LLSs (41%). Short-term (few day) and long-term (decades) variability, as well as possible AGB contamination in the YSO catalogues, are also discussed.molecules become more complex by surface chemistry induced directly by high energy photons or by the thermal energy diffused over heated grain surface. Therefore, the ice composition is an

  • PDF

The warm CO gas along the UV-heated outflow walls: a possible interpretation for the Herschel-PACS CO spectra of embedded YSO

  • Lee, Seokho;Lee, Jeong-Eun;Bergin, Edwin A.;Park, Yong-Sun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.67.2-67.2
    • /
    • 2013
  • Part of mid-J CO emission detected by the Herschel/PACS observations of embedded young stellar objects (YSOs) has been attributed to the UV-heated outflow walls. We have applied our newly developed self-consistent models of Photon Dominated Region (PDR) and Non-LTE line Radiative transfer In general Grid (RIG) to the Herschel FIR CO observations. If the black body radiation of T = 15,000 K is used, the observed mid-J CO line fluxes can be produced in inner dense regions (n ${\geq}$ 106 cm-3) with -4.5 ${\leq}$ log Gdust/n ${\leq}$ -2.5, where gas temperatures are larger than 300 K and CO abundances are ${\geq}$ 10-5, along the UV-heated outflow walls. The contribution of the UV heated outflow cavity wall in Class I seems to be larger than that in Class 0.

  • PDF

RECENT PROGRESS IN HIGH-MASS STAR-FORMATION STUDIES WITH ALMA

  • Hirota, Tomoya
    • Publications of The Korean Astronomical Society
    • /
    • v.33 no.2
    • /
    • pp.21-30
    • /
    • 2018
  • Formation processes of high-mass stars have been long-standing issues in astronomy and astrophysics. This is mainly because of major difficulties in observational studies such as a smaller number of high-mass young stellar objects (YSOs), larger distances, and more complex structures in young high-mass clusters compared with nearby low-mass isolated star-forming regions (SFRs), and extremely large opacity of interstellar dust except for centimeter to submillimeter wavelengths. High resolution and high sensitivity observations with Atacama Large Millimeter/Submillimeter Array (ALMA) at millimeter/submillimeter wavelengths will overcome these observational difficulties even for statistical studies with increasing number of high-mass YSO samples. This review will summarize recent progresses in high-mass star-formation studies with ALMA such as clumps and filaments in giant molecular cloud complexes and infrared dark clouds (IRDCs), protostellar disks and outflows in dense cores, chemistry, masers, and accretion bursts in high-mass SFRs.

EFFECT OF FIR FLUXES ON CONSTRAINING PROPERTIES OF YSOS

  • Ha, Ji-Sung;Lee, Jeong-Eun;Jeong, Woong-Seob
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.6
    • /
    • pp.213-223
    • /
    • 2010
  • Young Stellar Objects (YSOs) in the early evolutionary stages are very embedded, and thus they emit most of their energy at long wavelengths such as far-infrared (FIR) and submillimeter (Submm). Therefore, the FIR observational data are very important to classify the accurate evolutionary stages of these embedded YSOs, and to better constrain their physical parameters in the dust continuum modeling. We selected 28 YSOs, which were detected in the AKARI Far-Infrared Surveyor (FIS), from the Spitzer c2d legacy YSO catalogs to test the effect of FIR fluxes on the classification of their evolutionary stages and on the constraining of envelope properties, internal luminosity, and UV strength of the Interstellar Radiation Field (ISRF). According to our test, one can mis-classify the evolutionary stages of YSOs, especially the very embedded ones if the FIR fluxes are not included. In addition, the total amount of heating of YSOs can be underestimated without the FIR observational data.

Sub-mm variability of a YSO (EC53) in Serpens main region : JCMT Transient survey

  • Yoo, Hyunju;Lee, Jeong-Eun;Johnstone, Doug;Mairs, Steve;Herczeg, Gregory
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.39.2-39.2
    • /
    • 2017
  • Stars form through the gravitational collapse of molecular clouds. However, the rate at which a star gains most of its mass and the physics that drives the main phase of stellar growth is still unclear. The typical luminosity of observed protostars is smaller than what expected from the Shu's inside-out collapse model, which predicts a constant mass accretion rate. The episodic accretion model has been suggested as a solution of this luminosity problem. The JCMT Transient survey is a long term monitoring program using JCMT/SCUBA-2 to detect accretion variability of protostars in the eight nearby star-forming regions. Recently, we found a rise of the 850 micron flux at a clump in the Serpens main region at the rate of ~17% relative to the mean flux over previous observations. The submm clump is associated with a class I protostar, EC53, which has been reported as a binary system with a periodic variability. In this talk, we will provide a brief overview of the JCMT Transient Survey project, present the detection of the variable source, and discuss about follow-up observations.

  • PDF

Herschel FIR Observations of Molecule Lines in L1448-MM

  • Lee, Jin-Hee;Lee, Jeong-Eun;DIGIT team, DIGIT team
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.116.1-116.1
    • /
    • 2011
  • L1448-MM, known as a class 0 YSO with a prominent outflow, was observed with the Photodetector Array Camera and Spectrometer (PACS) aboard Herschel Space Observatory by the key program, DIGIT (Dust, Ice, Gas in Time, PI: Neal Evans). The PACS covers various molecular and atomic line transitions such as CO, OH, $H_2O$, [OI], and [CII] at wavelengths from 55 to 210 ${\mu}m$. The line emission of $H_2O$, [OI], mid-J CO, and the OH fundamental transition distributes along the outflow direction although high-J CO and other OH emission peaks at the central spatial pixel. According to our excitation analysis, the CO gas has two temperature components: 300 K and 750 K, which are attributed to PDR and shock, respectively. However, the $H_2O$ gas with the rotation temperature ($T_{rot}$) of 200 K seems only affected by shock. Interestingly, the relative strength of OH transitions suggests the IR pumping process in L1448-MM. We also mapped L1448-MM in CO J=2-1 with the SRAO 6m telescope to compare with the FIR line transition maps.

  • PDF

"Bluening" in Spitzer/IRAC Bands by Interstellar Extinction

  • Sim, Chae Kyung;Kim, Sungsoo S.;Lee, Jeong-Eun;Kim, Sang Joon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.55.1-55.1
    • /
    • 2013
  • We analyze the behaviors of reddening vectors in the Spitzer/IRAC photometric system for young stellar objects (YSOs) of different evolutionary stages, masses, and inclinations using the model spectral energy distributions (SED) by Robitaille et al. As reported in visible and near-infrared photometric systems, the magnitudes and colors of YSOs show strong SED dependence and non-linearity. In the [8.0] band where the 9.7 ${\mu}m$ interstellar silicate feature plays a significant role in extinction, the effective wavelength shifts "bluewards", not "redwards" as in most, if not all, optical and infrared bands including the other three IRAC bands, as the extinction in Ks increases up to ~2 mag, and then asymptotically reaches a constant value as the extinction further increases. This "bluening" is seen when the YSO is in later evolutionary stage and/or has a stellar mass of ~2 $M_{\odot}$ or greater. In many cases, the reddening vectors in the IRAC color-color diagrams are prominently curved, and in some extreme cases, the colors involving the [8.0] band becomes bluer in the beginning and then becomes redder later as the amount of extinction increases. We also present our "suggested" extinction laws employing the combination of a broken-power law and the 9.7 ${\mu}m$ silicate feature, which well reproduce the extinction behaviors observed in the IRAC bands.

  • PDF

High-Resolution Observations of the Molecular Clouds Associated with the Huge H II Region CTB 102 (거대 수소 이온화 영역 CTB 102와 연관된 분자운의 고분해능 관측)

  • Kang, Sung-Ju;Marshall, Brandon;Kerton, C.R.;Kim, Youngsik;Choi, Minho;Kang, Miju
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.71.1-71.1
    • /
    • 2019
  • We report the first high-resolution (sub-arcminute) large-scale mapping $^{12}CO$ and $^{13}CO$ observations of the molecular clouds associated with the giant outer Galaxy H II region CTB 102 (KR 1). These observations were made using a newly commissioned receiver on the 13.7-m radio telescope at the Taeduk Radio astronomy Observatory (TRAO). Our observations show that the molecular clouds have a spatial extent of $60{\times}35pc$ and a total mass of $10^{4.8}-10^{5.0}$ solar mass, Infrared data from WISE and 2MASS were used to identify and classify the YSO population associated with ongoing star formation activity within the molecular clouds. Moving away from the H II region, there is an age/class gradient consistent with sequential star formation. The infrared and molecular line data were combined to estimate the star formation efficiency (SFE) of the entire cloud as well as the SFE for various sub regions of the cloud.

  • PDF