• 제목/요약/키워드: YOLOv5s

검색결과 47건 처리시간 0.029초

전산화단층영상 기반 뇌출혈 검출을 위한 YOLOv5s 성능 평가 (Performance Evaluation of YOLOv5s for Brain Hemorrhage Detection Using Computed Tomography Images)

  • 김성민;이승완
    • 한국방사선학회논문지
    • /
    • 제16권1호
    • /
    • pp.25-34
    • /
    • 2022
  • 뇌 전산화단층촬영은 비침습성, 3차원 영상 제공, 저방사선량 등의 장점 때문에 뇌출혈과 같은 질병 진단을 위해 시행된다. 하지만 뇌 전산화단층영상 판독을 위한 전문의의 인력 공급 부족 및 막대한 업무량으로 인해 수많은 판독 오류 및 오진이 발생하고 있다. 이와 같은 문제를 해결하기 위해 객체 검출을 위한 다양한 인공지능 기술이 개발되고 있다. 본 연구에서는 뇌 전산화단층영상으로부터 뇌출혈 검출을 위한 딥러닝 기반 YOLOv5s 모델의 적용 가능성을 확인하였다. 또한 YOLOv5s 모델 학습 시 초매개변수를 변화시켜 학습된 모델의 성능을 평가하였다. YOLOv5s 모델은 backbone, neck 및 output 모듈로 구성하였고, 입력 CT 영상 내 뇌출혈로 의심되는 부위를 검출하여 출력할 수 있도록 하였다. YOLOv5s 모델 학습 시 활성화함수, 최적화함수, 손실함수 및 학습 횟수를 변화시켰고, 학습된 모델의 뇌출혈 검출 정확도 및 학습 시간을 측정하였다. 연구결과 학습된 YOLOv5s 모델은 뇌출혈로 의심되는 부위에 대한 경계 박스 및 해당 경계박스에 대한 정확도를 출력할 수 있음을 확인하였다. Mish 활성화함수, stochastic gradient descent 최적화함수 및 completed intersection over union 손실함수 적용 시 YOLOv5s 모델의 뇌출혈 검출 정확도 향상 및 학습 시간이 단축되는 결과를 확인하였다. 또한 YOLOv5s 모델의 뇌출혈 검출 정확도 및 학습 시간은 학습 횟수에 비례하여 증가하는 결과를 확인하였다. 따라서 YOLOv5s 모델은 뇌 전산화단층영상을 이용한 뇌출혈 검출을 위해 활용할 수 있으며, 최적의 초매개변수 적용을 통해 성능을 향상 시킬 수 있다.

Development of YOLOv5s and DeepSORT Mixed Neural Network to Improve Fire Detection Performance

  • Jong-Hyun Lee;Sang-Hyun Lee
    • International Journal of Advanced Culture Technology
    • /
    • 제11권1호
    • /
    • pp.320-324
    • /
    • 2023
  • As urbanization accelerates and facilities that use energy increase, human life and property damage due to fire is increasing. Therefore, a fire monitoring system capable of quickly detecting a fire is required to reduce economic loss and human damage caused by a fire. In this study, we aim to develop an improved artificial intelligence model that can increase the accuracy of low fire alarms by mixing DeepSORT, which has strengths in object tracking, with the YOLOv5s model. In order to develop a fire detection model that is faster and more accurate than the existing artificial intelligence model, DeepSORT, a technology that complements and extends SORT as one of the most widely used frameworks for object tracking and YOLOv5s model, was selected and a mixed model was used and compared with the YOLOv5s model. As the final research result of this paper, the accuracy of YOLOv5s model was 96.3% and the number of frames per second was 30, and the YOLOv5s_DeepSORT mixed model was 0.9% higher in accuracy than YOLOv5s with an accuracy of 97.2% and number of frames per second: 30.

Fundamental Function Design of Real-Time Unmanned Monitoring System Applying YOLOv5s on NVIDIA TX2TM AI Edge Computing Platform

  • LEE, SI HYUN
    • International journal of advanced smart convergence
    • /
    • 제11권2호
    • /
    • pp.22-29
    • /
    • 2022
  • In this paper, for the purpose of designing an real-time unmanned monitoring system, the YOLOv5s (small) object detection model was applied on the NVIDIA TX2TM AI (Artificial Intelligence) edge computing platform in order to design the fundamental function of an unmanned monitoring system that can detect objects in real time. YOLOv5s was applied to the our real-time unmanned monitoring system based on the performance evaluation of object detection algorithms (for example, R-CNN, SSD, RetinaNet, and YOLOv5). In addition, the performance of the four YOLOv5 models (small, medium, large, and xlarge) was compared and evaluated. Furthermore, based on these results, the YOLOv5s model suitable for the design purpose of this paper was ported to the NVIDIA TX2TM AI edge computing system and it was confirmed that it operates normally. The real-time unmanned monitoring system designed as a result of the research can be applied to various application fields such as an security or monitoring system. Future research is to apply NMS (Non-Maximum Suppression) modification, model reconstruction, and parallel processing programming techniques using CUDA (Compute Unified Device Architecture) for the improvement of object detection speed and performance.

딥러닝 기반 육상기인 부유쓰레기 탐지 모델 성능 비교 및 현장 적용성 평가 (A Performance Comparison of Land-Based Floating Debris Detection Based on Deep Learning and Its Field Applications)

  • 박수호;장선웅;김흥민;김탁영;예건희
    • 대한원격탐사학회지
    • /
    • 제39권2호
    • /
    • pp.193-205
    • /
    • 2023
  • 집중강우 시 육상으로부터 다량으로 유입된 부유쓰레기는 사회, 경제적 및 환경적으로 부정적인 영향을 주고 있으나 부유쓰레기 집적 구간 및 발생량에 대한 모니터링 체계는 미흡한 실정이다. 최근 인공지능 기술의 발달로 드론 영상과 딥러닝 기반 객체탐지 모델을 활용하여 수계 내 광범위한 지역을 신속하고 효율적인 연구의 필요성이 요구되고 있다. 본 연구에서는 육상기인 부유쓰레기의 효율적인 탐지 기법을 제시하기 위해 드론 영상뿐만 아니라 다양한 이미지를 확보하여 You Only Look Once (YOLO)v5s와 최근에 개발된 YOLO7 및 YOLOv8s로 학습하여 모델별로 성능을 비교하였다. 각 모델의 정성적인 성능 평가 결과, 세 모델 모두 일반적인 상황에서 탐지성능이 우수한 것으로 나타났으나, 이미지의 노출이 심하거나 수면의 태양광 반사가 심한 경우 YOLOv8s 모델에서 대상물을 누락 또는 중복 탐지하는 사례가 나타났다. 정량적인 성능 평가 결과, YOLOv7의 mean Average Precision (intersection over union, IoU 0.5)이 0.940으로 YOLOv5s (0.922)와 YOLOvs8(0.922)보다 좋은 성능을 나타냈다. 데이터 품질에 따른 모델의 성능 비교하기 위해 색상 및 고주파 성분에 왜곡을 발생시킨 결과, YOLOv8s 모델의 성능 저하가 가장 뚜렷하게 나타났으며, YOLOv7 모델이 가장 낮은 성능 저하 폭을 보였다. 이를 통해 수면 위에 존재하는 부유쓰레기 탐지에 있어서 YOLOv7 모델이 YOLOv5s와 YOLOv8s 모델에 비해 강인한 모델임을 확인하였다. 본 연구에서 제안하는 딥러닝 기반 부유쓰레기 탐지 기법은 부유쓰레기의 성상별 분포 현황을 공간적으로 파악할 수 있어 향후 정화작업 계획수립에 기여할 수 있을 것으로 판단된다.

무인기로 취득한 RGB 영상과 YOLOv5를 이용한 수수 이삭 탐지 (Sorghum Panicle Detection using YOLOv5 based on RGB Image Acquired by UAV System)

  • 박민준;유찬석;강예성;송혜영;백현찬;박기수;김은리;박진기;장시형
    • 한국농림기상학회지
    • /
    • 제24권4호
    • /
    • pp.295-304
    • /
    • 2022
  • 본 연구는 수수의 수확량 추정을 위해 무인기로 취득한 RGB 영상과 YOLOv5를 이용하여 수수 이삭 탐지 모델을 개발하였다. 이삭이 가장 잘 식별되는 9월 2일의 영상 중 512×512로 분할된 2000장을 이용하여 모델의 학습, 검증 및 테스트하였다. YOLOv5의 모델 중 가장 파라미터가 적은 YOLOv5s에서 mAP@50=0.845로 수수 이삭을 탐지할 수 있었다. 파라미터가 증가한 YOLOv5m에서는 mAP@50=0.844로 수수 이삭을 탐지할 수 있었다. 두 모델의 성능이 유사하나 YOLOv5s (4시간 35분)가 YOLOv5m (5시간 15분)보다 훈련시간이 더 빨라 YOLOv5s가 수수 이삭 탐지에 효율적이라고 판단된다. 개발된 모델을 이용하여 수수의 수확량 예측을 위한 단위면적당 이삭 수를 추정하는 알고리즘의 기초자료로 유용하게 활용될 것으로 판단된다. 추가적으로 아직 개발의 초기 단계를 감안하면 확보된 데이터를 이용하여 성능 개선 및 다른 CNN 모델과 비교 검토할 필요가 있다고 사료된다.

시각장애인을 위한 음성안내 네비게이션 시스템의 심층신경망 성능 비교 (Comparison of Deep Learning Networks in Voice-Guided System for The Blind)

  • 안륜희;엄성호;유윤섭
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.175-177
    • /
    • 2022
  • 본 논문은 시각장애인이 원하는 목적지까지 버스를 이용하여 이동하는 것을 보조하는 시스템 안에 사용될 수 있는 심층신경망에 따라 성능을 비교하였다. 이 시스템은 GPS, 경로 안내 API를 이용하여 현재 위치에서 목적지까지 이르는 경로를 찾고 안내하는 스마트폰 어플리케이션과 임베디드 보드, 심층신경망, 버스정보 API를 이용해 원하는 버스의 탑승 대기시간을 구하고 도착을 감지하는 정거장 설치형 모듈로 이루어져 있다. 정거장 설치형 모듈에 탑승할 버스 번호를 인식하기 위해서 faster-RCNN, YOLOv4, YOLOv5s 세 가지 심층신경망을 적용했고 최상 정확도와 속도면에서 YOLOv5s 심층신경망이 가장 좋은 성능을 보였다.

  • PDF

ESL의 YOLOv5: 참여 학습을 위한 객체 감지 (YOLOv5 in ESL: Object Detection for Engaging Learning)

  • 파딜라 존에드워드;이강희
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.45-46
    • /
    • 2023
  • In order to improve and promote immersive learning experiences for English as a Second Language (ESL) students, the deployment of a YOLOv5 model for object identification in videos is proposed. The procedure includes collecting annotated datasets, preparing the data, and then fine-tuning a model using the YOLOv5 framework. The study's major objective is to integrate a well-trained model into ESL instruction in order to analyze the effectiveness of AI application in the field.

  • PDF

객체 인식 모델 기반 실시간 교통신호 정보 인식 (Real-time traffic light information recognition based on object detection models)

  • 주은오;김민수
    • 지적과 국토정보
    • /
    • 제52권1호
    • /
    • pp.81-93
    • /
    • 2022
  • 최근 자율주행 기술에서 차량 주변 객체 인식과 교통표지판 및 차량 신호 인식을 위한 연구가 활발히 수행되고 있으며, 특히 차량 신호 인식은 자율주행 기술에 있어서 핵심 요소로 평가되고 있다. 이에 차량 신호 인식을 위한 다양한 연구가 진행되어 왔으며, 최근에는 딥러닝 기반 객체 인식 모델을 활용한 차량 신호 인식 연구가 크게 증가하고 있다. 또한 AIHub에서 음성, 비전, 자율주행 등을 위한 양질의 국내 인공지능 학습데이터 셋이 공개됨에 따라 이들 데이터를 활용한 국내 환경에 적합한 차량 신호 인식 모델의 개발도 가능하게 되었다. 이에 본 연구에서는 AIHub의 학습데이터와 객체 인식모델 YOLO를 적용한 국내 차량 신호 인식 모델을 개발하였다. 특히 차량 신호의 인식 성능을 개선하기 위하여 YOLOv4와 YOLOv5의 다양한 모델을 적용하였으며 학습데이터의 클래스도 다양하게 분류하여 실험을 수행하였다. 결론적으로 YOLOv5가 YOLOv4보다 차량 신호 인식에 조금 더 적합함을 확인할 수 있었으며, 두 모델의 아키텍처 비교를 통하여 YOLOv5 성능이 우수한 이유를 확인할 수 있었다.

Comparison analysis of YOLOv10 and existing object detection model performance

  • Joon-Yong Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권8호
    • /
    • pp.85-92
    • /
    • 2024
  • 본 논문에서는 최신 객체 탐지 모델인 YOLOv10과 이전 버전들 간의 성능을 비교 분석하였다. YOLOv10은 NMS-Free 훈련, 향상된 모델 아키텍처, 효율성 중심의 설계 등을 도입하여 뛰어난 성능을 보인다. COCO 데이터셋을 사용한 실험 결과, 특히 YOLOv10-N은 2.3M의 적은 파라미터 수와 6.7G의 부동 소수점 연산(FLOPs)으로도 39.5%의 높은 정확도와 1.84ms의 낮은 지연 시간을 유지하였다. 주요 성능 지표로는 모델 파라미터 수, FLOPs, 평균 정확도(AP), 지연 시간을 사용하였다. 분석 결과, YOLOv10은 다양한 응용 분야에서 실시간 객체 탐지 모델로서의 효과성을 확인하였다. 향후 연구로는 다양한 데이터셋 테스트와 모델 최적화, 응용 사례 확대 등을 제안하였다. 이를 통해 YOLOv10의 범용성과 효율성을 더욱 높일 수 있을 것이다.

YOLOv5를 이용한 개인정보 탐지 및 마스킹 알고리즘 구현 (Implementation of personal information detection and masking algorithm using YOLOv5)

  • 유수연;박유나;서지혜;오지연
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.920-921
    • /
    • 2023
  • 미디어 공유 활성화에 따라 개인정보 노출의 위험성이 증가하고 있다. 본 논문에서는 YOLOv5를 통해 학습한 모델을 바탕으로 이미지에서 개인정보가 담긴 물체를 탐지하는 연구를 진행하였다. 모델로 탐지된 객체에는 광학 인식 기술(OCR)을 적용하여 객체 내의 텍스트 속 개인정보 영역을 마스킹한다. 설계된 알고리즘은 여러 분야에 활용되어 개인정보에 대한 서비스 강화를 제공해 줄 수 있을 것으로 기대된다.